import torch from transformers import AutoConfig from typing import Optional from text_generation.models.model import Model from text_generation.models.causal_lm import CausalLM from text_generation.models.bloom import BLOOM, BLOOMSharded from text_generation.models.seq2seq_lm import Seq2SeqLM from text_generation.models.galactica import Galactica, GalacticaSharded from text_generation.models.santacoder import SantaCoder from text_generation.models.gpt_neox import GPTNeox, GPTNeoxSharded from text_generation.models.t5 import T5Sharded __all__ = [ "Model", "BLOOM", "BLOOMSharded", "CausalLM", "Galactica", "GalacticaSharded", "GPTNeox", "GPTNeoxSharded", "Seq2SeqLM", "SantaCoder", "T5Sharded", "get_model", ] # The flag below controls whether to allow TF32 on matmul. This flag defaults to False # in PyTorch 1.12 and later. torch.backends.cuda.matmul.allow_tf32 = True # The flag below controls whether to allow TF32 on cuDNN. This flag defaults to True. torch.backends.cudnn.allow_tf32 = True # Disable gradients torch.set_grad_enabled(False) def get_model( model_id: str, revision: Optional[str], sharded: bool, quantize: bool ) -> Model: if model_id.startswith("facebook/galactica"): if sharded: return GalacticaSharded(model_id, revision, quantize=quantize) else: return Galactica(model_id, revision, quantize=quantize) if "santacoder" in model_id: return SantaCoder(model_id, revision, quantize) config = AutoConfig.from_pretrained(model_id, revision=revision) if config.model_type == "bloom": if sharded: return BLOOMSharded(model_id, revision, quantize=quantize) else: return BLOOM(model_id, revision, quantize=quantize) if config.model_type == "gpt_neox": if sharded: return GPTNeoxSharded(model_id, revision, quantize=quantize) else: return GPTNeox(model_id, revision, quantize=quantize) if config.model_type == "t5": if sharded: return T5Sharded(model_id, revision, quantize=quantize) else: return Seq2SeqLM(model_id, revision, quantize=quantize) if sharded: raise ValueError("sharded is not supported for AutoModel") try: return CausalLM(model_id, revision, quantize=quantize) except Exception: return Seq2SeqLM(model_id, revision, quantize=quantize)