import os import torch from torch import nn from text_generation_server.utils.import_utils import SYSTEM if SYSTEM == "cuda": from flash_attn.layers.rotary import RotaryEmbedding import rotary_emb elif SYSTEM == "rocm": from vllm._C import ops elif SYSTEM == "ipex": import intel_extension_for_pytorch as ipex def _create_inv_freq(dim, base, device): inv_freq = 1.0 / ( base ** (torch.arange(0, dim, 2, device=device, dtype=torch.float32) / dim) ) return inv_freq def _get_rope_config(config): if os.getenv("ROPE_SCALING", None) is not None: rope_scaling = { "type": os.environ["ROPE_SCALING"], "factor": float(os.environ["ROPE_FACTOR"]), } return rope_scaling return getattr(config, "rope_scaling", None) class PositionRotaryEmbedding(nn.Module): def __init__(self, inv_freq, scaling_factor): super().__init__() self.inv_freq = inv_freq self._seq_len_cached = 0 self._cos_cached = None self._sin_cached = None self._cos_k_cached = None self._sin_k_cached = None self.scaling_factor = scaling_factor self.dynamic_args = None def forward( self, query: torch.Tensor, key: torch.Tensor, cos: torch.Tensor, sin: torch.Tensor, ): # Such controlflows may add some overhead. if SYSTEM == "cuda": rotary_dim = cos.shape[-1] q1 = query[..., :rotary_dim] q2 = query[..., rotary_dim : 2 * rotary_dim] rotary_emb.apply_rotary(q1, q2, cos, sin, q1, q2, False) k1 = key[..., :rotary_dim] k2 = key[..., rotary_dim : 2 * rotary_dim] rotary_emb.apply_rotary(k1, k2, cos, sin, k1, k2, False) elif SYSTEM == "rocm": # NOTE: On RoCm systems, we use a ROPE implementatation adapted from VLLM which launches a single kernel for both query/key, contrary to flash-attn implementation used on NVIDIA systems. # Compiling flash-attn rotary on RoCm, it appears hipcc is unable to unroll loops, resulting in an even slower inference compared to eager: https://github.com/pytorch/pytorch/issues/113773 head_size = query.shape[-1] # Inplace operation, updating query and key. ops.rotary_embedding(query, key, head_size, cos, sin, True) elif SYSTEM == "ipex": ipex.llm.functional.rotary_embedding( query, key, sin, cos, query.size(-1), True ) else: raise ValueError( "Your system seem to be not supported. Please check your install or open an issue at https://github.com/huggingface/text-generation-inference/issues with a clear reproduction." ) @classmethod def static(cls, config, dim, base, device): inv_freq = _create_inv_freq(dim, base, device) scaling_factor = None rope_scaling = _get_rope_config(config) if rope_scaling is not None: if rope_scaling["type"] == "linear": pass elif rope_scaling["type"] == "dynamic": scaling_factor = rope_scaling["factor"] return DynamicPositionRotaryEmbedding( dim=dim, max_position_embeddings=config.max_position_embeddings, base=base, device=inv_freq.device, scaling_factor=scaling_factor, ) elif rope_scaling["type"] == "yarn": scaling_factor = rope_scaling["factor"] return YarnPositionRotaryEmbedding( dim=2 * inv_freq.shape[0], max_position_embeddings=rope_scaling[ "original_max_position_embeddings" ], base=base, device=inv_freq.device, scaling_factor=scaling_factor, extrapolation_factor=1, attn_factor=1, beta_fast=32, beta_slow=1, ) elif rope_scaling["type"] in ["su", "longrope"]: short_factor = torch.tensor( rope_scaling["short_factor"], dtype=torch.float32, device=device ) short_inv_freq = 1.0 / ( short_factor * base ** ( torch.arange(0, dim, 2, device=device, dtype=torch.float32) / dim ) ) long_factor = torch.tensor( rope_scaling["long_factor"], dtype=torch.float32, device=device ) long_inv_freq = 1.0 / ( long_factor * base ** ( torch.arange(0, dim, 2, device=device, dtype=torch.float32) / dim ) ) original_max_position_embeddings = ( config.original_max_position_embeddings ) max_position_embeddings = config.max_position_embeddings if max_position_embeddings <= original_max_position_embeddings: scaling_factor = 1.0 else: scale = max_position_embeddings / original_max_position_embeddings scaling_factor = math.sqrt( 1 + math.log(scale) / math.log(original_max_position_embeddings) ) return SuRotaryEmbedding( short_inv_freq=short_inv_freq, long_inv_freq=long_inv_freq, scaling_factor=scaling_factor, original_max_position_embeddings=original_max_position_embeddings, ) else: raise NotImplementedError( f"rope scaling type {rope_scaling['type']} is not implemented or invalid" ) return cls(inv_freq, scaling_factor) @classmethod def load(cls, config, prefix, weights): # XXX: Always load this in float32 ! dtype = weights.dtype weights.dtype = torch.float32 inv_freq = weights.get_tensor(f"{prefix}.inv_freq") weights.dtype = dtype scaling_factor = None rope_scaling = _get_rope_config(config) if rope_scaling is not None: scaling_factor = rope_scaling["factor"] if rope_scaling["type"] == "linear": pass elif rope_scaling["type"] == "dynamic": return DynamicPositionRotaryEmbedding( dim=2 * inv_freq.shape[0], max_position_embeddings=config.max_position_embeddings, base=10000.0, device=inv_freq.device, scaling_factor=scaling_factor, ) elif rope_scaling["type"] == "yarn": return YarnPositionRotaryEmbedding( dim=2 * inv_freq.shape[0], max_position_embeddings=rope_scaling[ "original_max_position_embeddings" ], base=10000.0, device=inv_freq.device, scaling_factor=scaling_factor, extrapolation_factor=1, attn_factor=1, beta_fast=32, beta_slow=1, ) else: raise NotImplementedError( f"rope scaling type {rope_scaling['type']} is not implemented or invalid" ) return cls(inv_freq, scaling_factor) def _update_cos_sin_cache(self, dtype, device, seqlen): # Reset the tables if the sequence length has changed, # or if we're on a new device (possibly due to tracing for instance) if ( seqlen > self._seq_len_cached or self._cos_cached.device != device or self._cos_cached.dtype != dtype ): self._seq_len_cached = seqlen t = torch.arange(seqlen, device=device, dtype=self.inv_freq.dtype) if self.scaling_factor is not None: t /= self.scaling_factor # Don't do einsum, it converts fp32 to fp16 # freqs = torch.einsum("i,j->ij", t, self.inv_freq) freqs = torch.outer(t, self.inv_freq.to(device=t.device)) self._cos_cached = torch.cos(freqs).to(dtype) self._sin_cached = torch.sin(freqs).to(dtype) def get_cos_sin(self, position_ids: torch.Tensor, max_s: int, dtype: torch.dtype): """ Return cos and sin for the asked position ids """ if SYSTEM == "rocm": # For RoCm, we always use float cos/sin to avoid a cast. # For NVIDIA, for some reason, the flash-attn rotary kernel requires cos/sin and query/key to be of same dtype: https://github.com/Dao-AILab/flash-attention/blob/017716451d446e464dde9aca3a3c1ed2209caaa9/csrc/rotary/rotary.cpp#L26 # But later on goes and cast cos/sin to float anyway: https://github.com/Dao-AILab/flash-attention/blob/017716451d446e464dde9aca3a3c1ed2209caaa9/csrc/rotary/rotary_cuda.cu#L29, which looks suboptimal. dtype = torch.float32 self._update_cos_sin_cache(dtype, position_ids.device, max_s) cos = torch.index_select(self._cos_cached, 0, position_ids) sin = torch.index_select(self._sin_cached, 0, position_ids) # Note: this unsqueeze is not necessary on RoCm + VLLM ROPE implementation, but we leave it as is to avoid yet an other controlflow. return cos.unsqueeze(1), sin.unsqueeze(1) class SuRotaryEmbedding(PositionRotaryEmbedding): def __init__( self, short_inv_freq, long_inv_freq, scaling_factor, original_max_position_embeddings, ): super(PositionRotaryEmbedding, self).__init__() self.short_inv_freq = short_inv_freq self.long_inv_freq = long_inv_freq self.scaling_factor = scaling_factor self.original_max_position_embeddings = original_max_position_embeddings self._seq_len_cached = 0 self._cos_cached = None self._sin_cached = None self._cos_k_cached = None self._sin_k_cached = None self.dynamic_args = None def _update_cos_sin_cache(self, dtype, device, seqlen): # Reset the tables if the sequence length has changed, # or if we're on a new device (possibly due to tracing for instance) if ( seqlen > self._seq_len_cached or self._cos_cached.device != device or self._cos_cached.dtype != dtype ): self._seq_len_cached = seqlen t = torch.arange(seqlen, device=device, dtype=self.short_inv_freq.dtype) short_freqs = torch.outer( t[: self.original_max_position_embeddings], self.short_inv_freq.to(device=t.device), ) long_freqs = torch.outer( t[self.original_max_position_embeddings :], self.long_inv_freq.to(device=t.device), ) freqs = torch.cat([short_freqs, long_freqs]) self._cos_cached = (torch.cos(freqs) * self.scaling_factor).to(dtype) self._sin_cached = (torch.sin(freqs) * self.scaling_factor).to(dtype) class DynamicPositionRotaryEmbedding(PositionRotaryEmbedding): def __init__(self, dim, max_position_embeddings, base, device, scaling_factor): inv_freq = _create_inv_freq(dim, base, device) super().__init__(inv_freq, scaling_factor) self.dim = dim self.max_position_embeddings = max_position_embeddings self.base = base def _update_cos_sin_cache(self, dtype, device, seqlen): # Reset the tables if the sequence length has changed, # or if we're on a new device (possibly due to tracing for instance) if ( seqlen > self._seq_len_cached or self._cos_cached.device != device or self._cos_cached.dtype != dtype ): if seqlen > self.max_position_embeddings: newbase = self.base * ( (self.scaling_factor * seqlen / self.max_position_embeddings) - (self.scaling_factor - 1) ) ** (self.dim / (self.dim - 2)) self.inv_freq = _create_inv_freq( self.dim, newbase, self.inv_freq.device ) self._seq_len_cached = seqlen t = torch.arange(seqlen, device=device, dtype=self.inv_freq.dtype) # Don't do einsum, it converts fp32 to fp16 # freqs = torch.einsum("i,j->ij", t, self.inv_freq) freqs = torch.outer(t, self.inv_freq.to(device=t.device)) self._cos_cached = torch.cos(freqs).to(dtype) self._sin_cached = torch.sin(freqs).to(dtype) # Inverse dim formula to find dim based on number of rotations import math def find_correction_dim(num_rotations, dim, base=10000, max_position_embeddings=2048): return (dim * math.log(max_position_embeddings / (num_rotations * 2 * math.pi))) / ( 2 * math.log(base) ) # Find dim range bounds based on rotations def find_correction_range( low_rot, high_rot, dim, base=10000, max_position_embeddings=2048 ): low = math.floor(find_correction_dim(low_rot, dim, base, max_position_embeddings)) high = math.ceil(find_correction_dim(high_rot, dim, base, max_position_embeddings)) return max(low, 0), min(high, dim - 1) # Clamp values just in case def linear_ramp_mask(min, max, dim): if min == max: max += 0.001 # Prevent singularity linear_func = (torch.arange(dim, dtype=torch.float32) - min) / (max - min) ramp_func = torch.clamp(linear_func, 0, 1) return ramp_func def get_mscale(scale=1): if scale <= 1: return 1.0 return 0.1 * math.log(scale) + 1.0 class YarnPositionRotaryEmbedding(PositionRotaryEmbedding): def __init__( self, dim, max_position_embeddings, base, device, scaling_factor, *, extrapolation_factor, attn_factor, beta_fast, beta_slow, ): inv_freq = _create_inv_freq(dim, base, device) super().__init__(inv_freq, scaling_factor) self.dim = dim self.max_position_embeddings = max_position_embeddings self.base = base self.extrapolation_factor = extrapolation_factor self.attn_factor = attn_factor self.beta_fast = beta_fast self.beta_slow = beta_slow self.mscale = float( get_mscale(self.scaling_factor) * self.attn_factor ) # Get n-d magnitude scaling corrected for interpolation def _update_cos_sin_cache(self, dtype, device, seqlen): # Reset the tables if the sequence length has changed, # or if we're on a new device (possibly due to tracing for instance) if ( seqlen > self._seq_len_cached or self._cos_cached.device != device or self._cos_cached.dtype != dtype ): if seqlen > self.max_position_embeddings: inv_freq_extrapolation = _create_inv_freq( self.dim, self.base, self.inv_freq.device ) freqs = 1.0 / inv_freq_extrapolation inv_freq_interpolation = 1.0 / (self.scaling_factor * freqs) low, high = find_correction_range( self.beta_fast, self.beta_slow, self.dim, self.base, self.max_position_embeddings, ) inv_freq_mask = ( 1 - linear_ramp_mask(low, high, self.dim // 2).float().to(device) ) * self.extrapolation_factor # Get n-d rotational scaling corrected for extrapolation inv_freq = ( inv_freq_interpolation * (1 - inv_freq_mask) + inv_freq_extrapolation * inv_freq_mask ) self.inv_freq = inv_freq self.mscale = float( get_mscale(self.scaling_factor) * self.attn_factor ) # Get n-d magnitude scaling corrected for interpolation self._seq_len_cached = seqlen t = torch.arange(seqlen, device=device, dtype=self.inv_freq.dtype) # Don't do einsum, it converts fp32 to fp16 # freqs = torch.einsum("i,j->ij", t, self.inv_freq) freqs = torch.outer(t, self.inv_freq.to(device=t.device)) self._cos_cached = (torch.cos(freqs) * self.mscale).to(dtype) self._sin_cached = (torch.sin(freqs) * self.mscale).to(dtype)