import re import torch import torch.distributed from typing import List, Optional, Type from accelerate import init_empty_weights from safetensors import safe_open from transformers import ( AutoTokenizer, AutoModelForCausalLM, AutoConfig, PreTrainedTokenizerBase, ) from transformers.models.opt.parallel_layers import ( TensorParallelColumnLinear, TensorParallelEmbedding, TensorParallelRowLinear, ) from text_generation.models import CausalLM from text_generation.pb import generate_pb2 from text_generation.models.causal_lm import CausalLMBatch from text_generation.utils import ( NextTokenChooser, StoppingCriteria, initialize_torch_distributed, weight_files, download_weights, ) HAS_BITS_AND_BYTES = True try: import bitsandbytes as bnb from bitsandbytes.nn import Int8Params except Exception as e: HAS_BITS_AND_BYTES = False # CREDIT: Papers with code => https://github.com/paperswithcode/galai/blob/main/galai/utils.py # we split individual characters inside special tokens like [START_DNA] CUSTOM_SEQ_RE = re.compile(r"(\[START_(DNA|SMILES|I_SMILES|AMINO)])(.*?)(\[END_\2])") # token added to implement a custom sequence tokenization. This token is added at # corpus cleaning step and removed in pretokenization. The digits are added to increase the chance # that they do not occur in the corpus. The digits are escaped so that the token does not appear # literally in the source code in case we ever include it in the training data. SPLIT_MARKER = f"SPL{1}T-TH{1}S-Pl3A5E" def _insert_split_marker(m: re.Match): """ Applies split marker based on a regex match of special tokens such as [START_DNA]. Parameters ---------- n : str Input text to split Returns ---------- str - the text with the split token added """ start_token, _, sequence, end_token = m.groups() sequence = re.sub(r"(.)", rf"{SPLIT_MARKER}\1", sequence, flags=re.DOTALL) return f"{start_token}{sequence}{SPLIT_MARKER}{end_token}" def escape_custom_split_sequence(text): """ Applies custom splitting to the text for GALILEO's tokenization Parameters ---------- text : str Input text to split Returns ---------- str - the text with the split token added """ return CUSTOM_SEQ_RE.sub(_insert_split_marker, text) # END CREDIT class GalacticaCausalLMBatch(CausalLMBatch): @classmethod def from_pb( cls, pb: generate_pb2.Batch, tokenizer: PreTrainedTokenizerBase, device: torch.device, ) -> "GalacticaCausalLMBatch": inputs = [] next_token_choosers = [] stopping_criterias = [] input_lengths = [] # Parse batch for r in pb.requests: # Add escape_custom_split_sequence to the CausalLMBatch logic inputs.append(escape_custom_split_sequence(r.inputs)) input_lengths.append(r.input_length) next_token_choosers.append(NextTokenChooser.from_pb(r.parameters, device)) stopping_criterias.append( StoppingCriteria.from_pb(r.stopping_parameters, tokenizer) ) # Tokenize batch pad_to_multiple_of = 8 if device.type == "cuda" else None tokenized_inputs = tokenizer( inputs, return_tensors="pt", padding=True, pad_to_multiple_of=pad_to_multiple_of, return_token_type_ids=False, ).to(device) position_ids = tokenized_inputs["attention_mask"].long().cumsum(-1) - 1 position_ids.masked_fill_(tokenized_inputs["attention_mask"] == 0, 1) all_input_ids = tokenized_inputs["input_ids"].unsqueeze(-1) return cls( batch_id=pb.id, requests=pb.requests, input_ids=tokenized_inputs["input_ids"], attention_mask=tokenized_inputs["attention_mask"], position_ids=position_ids, past_key_values=None, all_input_ids=all_input_ids, input_lengths=input_lengths, next_token_choosers=next_token_choosers, stopping_criterias=stopping_criterias, size=pb.size, max_sequence_length=max(input_lengths), ) class Galactica(CausalLM): @property def batch_type(self) -> Type[CausalLMBatch]: return GalacticaCausalLMBatch def decode(self, generated_ids: List[int]) -> str: # Do not skip special tokens as they are used for custom parsing rules of the generated text return self.tokenizer.decode( generated_ids, skip_special_tokens=False, cleanup_tokenization_spaces=False ) class GalacticaSharded(Galactica): def __init__( self, model_id: str, revision: Optional[str] = None, quantize: bool = False ): if not model_id.startswith("facebook/galactica"): raise ValueError(f"Model {model_id} is not supported") self.process_group, self.rank, self.world_size = initialize_torch_distributed() self.master = self.rank == 0 if torch.cuda.is_available(): device = torch.device(f"cuda:{self.rank}") dtype = torch.bfloat16 else: device = torch.device("cpu") dtype = torch.float32 tokenizer = AutoTokenizer.from_pretrained( model_id, revision=revision, padding_side="left" ) config = AutoConfig.from_pretrained( model_id, revision=revision, tp_parallel=True ) tokenizer.pad_token_id = config.pad_token_id # Only download weights for small models if self.master and model_id == "facebook/galactica-125m": download_weights(model_id, revision=revision, extension=".safetensors") torch.distributed.barrier(group=self.process_group) filenames = weight_files(model_id, revision=revision, extension=".safetensors") if not filenames: raise ValueError("No safetensors weights found") with init_empty_weights(): model = AutoModelForCausalLM.from_config(config) torch.distributed.barrier(group=self.process_group) self.load_weights( model, filenames, quantize=quantize, device=device, rank=self.rank, world_size=self.world_size, ) self.model = model.eval().to(dtype) torch.distributed.barrier(group=self.process_group) super(CausalLM, self).__init__( tokenizer=tokenizer, device=device, ) @staticmethod def load_weights( model, filenames: List[str], quantize: bool, device: torch.device, rank: int, world_size: int, ): parameters = dict(model.named_parameters()) for file in filenames: with safe_open( file, framework="pt", device=str(device) if not quantize else "cpu" ) as f: for name in f.keys(): if name == "lm_head.weight": continue module_name, param_name = name.rsplit(".", 1) module = model.get_submodule(module_name) current_tensor = parameters[name] slice_ = f.get_slice(name) if isinstance(module, TensorParallelColumnLinear): if param_name == "weight": size = slice_.get_shape()[0] block_size = size // world_size start = rank * block_size stop = (rank + 1) * block_size tensor = slice_[start:stop] else: size = slice_.get_shape()[0] block_size = size // world_size start = rank * block_size stop = (rank + 1) * block_size tensor = slice_[start:stop] elif isinstance(module, TensorParallelRowLinear): if param_name == "weight": size = slice_.get_shape()[1] block_size = size // world_size start = rank * block_size stop = (rank + 1) * block_size tensor = slice_[:, start:stop] else: tensor = slice_[:] # XXX: Hack for Rowlinear to add the bias only once. if rank != 0: tensor = torch.zeros_like(tensor) elif isinstance(module, TensorParallelEmbedding): size = slice_.get_shape()[0] block_size = size // world_size start = rank * block_size stop = (rank + 1) * block_size tensor = slice_[start:stop] else: tensor = slice_[:] if current_tensor.shape != tensor.shape: raise ValueError( f"Name {name} -- Current {current_tensor.shape} and got {tensor.shape}" ) tensor = tensor.contiguous() if quantize: if not HAS_BITS_AND_BYTES: raise ImportError( "bitsandbytes is not available on your machine either because it is not installed " "or you don't have a GPU.\n" "You can install it with `pip install bitsandbytes`." ) if ( type(module) in [TensorParallelRowLinear, TensorParallelColumnLinear] and param_name == "weight" ): tensor = Int8Params( tensor, has_fp16_weights=False, requires_grad=False, ).to(device) state = bnb.MatmulLtState() state.threshold = 6.0 state.has_fp16_weights = False state.memory_efficient_backward = False state.use_pool = True state.CB = tensor.CB state.SCB = tensor.SCB tensor.CB = None tensor.SCB = None def replace_linear(state): def linear(input, weight, bias): out = bnb.matmul( input, weight, state=state, threshold=state.threshold, bias=bias, ) if state.CB is not None: # we converted 8-bit row major to turing/ampere format # in the first inference pass # we no longer need the row-major weight del state.CB weight.data = state.CxB return out return linear module.linear = replace_linear(state) else: tensor = tensor.to(device) module._parameters[param_name] = tensor if name == "model.decoder.embed_tokens.weight": model.lm_head._parameters["weight"] = tensor def forward( self, input_ids, attention_mask, position_ids, past_key_values: Optional = None ): outputs = self.model.forward( input_ids=input_ids, attention_mask=attention_mask, position_ids=position_ids, past_key_values=past_key_values, use_cache=True, ) # Logits are sharded, so we need to gather them logits = [torch.empty_like(outputs.logits) for _ in range(self.world_size)] torch.distributed.all_gather(logits, outputs.logits, group=self.process_group) logits = torch.cat(logits, dim=2) return logits, outputs.past_key_values