import re import torch import torch.distributed from typing import List, Optional, Type from transformers import ( AutoTokenizer, AutoConfig, PreTrainedTokenizerBase, ) from text_generation_server.models import CausalLM from text_generation_server.models.causal_lm import CausalLMBatch from text_generation_server.pb import generate_pb2 from text_generation_server.models.custom_modeling.opt_modeling import OPTForCausalLM from text_generation_server.utils import ( NextTokenChooser, StoppingCriteria, initialize_torch_distributed, weight_files, Weights, ) from text_generation_server.utils.chunks import concat_text_chunks # CREDIT: Papers with code => https://github.com/paperswithcode/galai/blob/main/galai/utils.py # we split individual characters inside special tokens like [START_DNA] CUSTOM_SEQ_RE = re.compile(r"(\[START_(DNA|SMILES|I_SMILES|AMINO)])(.*?)(\[END_\2])") # token added to implement a custom sequence tokenization. This token is added at # corpus cleaning step and removed in pretokenization. The digits are added to increase the chance # that they do not occur in the corpus. The digits are escaped so that the token does not appear # literally in the source code in case we ever include it in the training data. SPLIT_MARKER = f"SPL{1}T-TH{1}S-Pl3A5E" def _insert_split_marker(m: re.Match): """ Applies split marker based on a regex match of special tokens such as [START_DNA]. Parameters ---------- n : str Input text to split Returns ---------- str - the text with the split token added """ start_token, _, sequence, end_token = m.groups() sequence = re.sub(r"(.)", rf"{SPLIT_MARKER}\1", sequence, flags=re.DOTALL) return f"{start_token}{sequence}{SPLIT_MARKER}{end_token}" def escape_custom_split_sequence(text): """ Applies custom splitting to the text for GALILEO's tokenization Parameters ---------- text : str Input text to split Returns ---------- str - the text with the split token added """ return CUSTOM_SEQ_RE.sub(_insert_split_marker, text) # END CREDIT class GalacticaCausalLMBatch(CausalLMBatch): @classmethod def from_pb( cls, pb: generate_pb2.Batch, tokenizer: PreTrainedTokenizerBase, dtype: torch.dtype, device: torch.device, ) -> "GalacticaCausalLMBatch": inputs = [] next_token_choosers = [] stopping_criterias = [] prefix_offsets = [] top_n_tokens = [] read_offsets = [] requests_idx_mapping = {} # Parse batch max_truncation = 0 padding_right_offset = 0 max_decode_tokens = 0 for i, r in enumerate(pb.requests): requests_idx_mapping[r.id] = i # Add escape_custom_split_sequence to the CausalLMBatch logic inputs.append( escape_custom_split_sequence(concat_text_chunks(r.input_chunks.chunks)) ) next_token_choosers.append( NextTokenChooser.from_pb(r.parameters, device, tokenizer) ) stopping_criteria = StoppingCriteria.from_pb( r.stopping_parameters, tokenizer ) stopping_criterias.append(stopping_criteria) top_n_tokens.append(r.top_n_tokens) max_truncation = max(max_truncation, r.truncate) max_decode_tokens += stopping_criteria.max_new_tokens padding_right_offset = max( padding_right_offset, stopping_criteria.max_new_tokens ) tokenized_inputs = tokenizer( inputs, return_tensors="pt", padding=True, return_token_type_ids=False, truncation=True, max_length=max_truncation, ).to(device) for _ in pb.requests: input_len = tokenized_inputs["input_ids"].shape[1] prefix_offsets.append(0) read_offsets.append(input_len) input_lengths = tokenized_inputs["attention_mask"].sum(1) max_input_length = input_lengths.max() input_ids = tokenized_inputs["input_ids"] # Allocate maximum attention_mask attention_mask = input_ids.new_zeros( (pb.size, max_input_length + padding_right_offset) ) # Copy tokenizer attention_mask into fully allocated attention_mask attention_mask[:, :max_input_length] = tokenized_inputs["attention_mask"] position_ids = tokenized_inputs["attention_mask"].long().cumsum(-1) - 1 position_ids.masked_fill_(tokenized_inputs["attention_mask"] == 0, 1) all_input_ids = tokenized_inputs["input_ids"].T.split(1, dim=1) top_n_tokens_tensor = torch.tensor( top_n_tokens, device=device, dtype=torch.int64 ) max_tokens = len(inputs) * max_input_length + max_decode_tokens return cls( batch_id=pb.id, requests=pb.requests, requests_idx_mapping=requests_idx_mapping, input_ids=input_ids, attention_mask=attention_mask, position_ids=position_ids, past_key_values=None, all_input_ids=list(all_input_ids), input_lengths=input_lengths.tolist(), prefix_offsets=prefix_offsets, read_offsets=read_offsets, next_token_choosers=next_token_choosers, stopping_criterias=stopping_criterias, top_n_tokens=top_n_tokens, top_n_tokens_tensor=top_n_tokens_tensor, max_input_length=max_input_length.item(), padding_right_offset=padding_right_offset, max_tokens=max_tokens, ) class GalacticaSharded(CausalLM): def __init__( self, model_id: str, revision: Optional[str] = None, quantize: Optional[str] = None, speculator: Optional[str] = None, dtype: Optional[torch.dtype] = None, trust_remote_code: bool = False, ): self.process_group, rank, world_size = initialize_torch_distributed() if torch.cuda.is_available(): device = torch.device(f"cuda:{rank}") dtype = torch.float16 if dtype is None else dtype else: device = torch.device("cpu") dtype = torch.float32 if dtype is None else dtype tokenizer = AutoTokenizer.from_pretrained( model_id, revision=revision, padding_side="left", truncation_side="left", trust_remote_code=trust_remote_code, ) config = AutoConfig.from_pretrained( model_id, revision=revision, tp_parallel=True, trust_remote_code=trust_remote_code, ) config.quantize = quantize tokenizer.pad_token_id = config.pad_token_id config.speculator = speculator torch.distributed.barrier(group=self.process_group) filenames = weight_files(model_id, revision=revision, extension=".safetensors") weights = Weights( filenames, device=device, dtype=dtype, process_group=self.process_group ) if config.quantize in ["gptq", "marlin"]: weights._set_gptq_params(model_id, revision) model = OPTForCausalLM(config, weights) torch.distributed.barrier(group=self.process_group) super(CausalLM, self).__init__( model=model, tokenizer=tokenizer, requires_padding=True, dtype=dtype, device=device, rank=rank, world_size=world_size, ) @property def batch_type(self) -> Type[CausalLMBatch]: return GalacticaCausalLMBatch def decode(self, generated_ids: List[int]) -> str: # Do not skip special tokens as they are used for custom parsing rules of the generated text return self.tokenizer.decode( generated_ids, skip_special_tokens=False, clean_up_tokenization_spaces=False ) def forward( self, input_ids, attention_mask, position_ids, past_key_values: Optional = None ): outputs, speculative_logits = self.model.forward( input_ids=input_ids, attention_mask=attention_mask, past_key_values=past_key_values, use_cache=True, ) return outputs.logits, speculative_logits, outputs.past_key_values