# Quick Tour The easiest way of getting started is using the official Docker container. Install Docker following [their installation instructions](https://docs.docker.com/get-docker/). Let's say you want to deploy [Falcon-7B Instruct](https://huggingface.co/tiiuae/falcon-7b-instruct) model with TGI. Here is an example on how to do that: ```bash model=tiiuae/falcon-7b-instruct volume=$PWD/data # share a volume with the Docker container to avoid downloading weights every run docker run --gpus all --shm-size 1g -p 8080:80 -v $volume:/data ghcr.io/huggingface/text-generation-inference:1.4 --model-id $model ``` To use NVIDIA GPUs, you need to install the [NVIDIA Container Toolkit](https://docs.nvidia.com/datacenter/cloud-native/container-toolkit/install-guide.html). We also recommend using NVIDIA drivers with CUDA version 12.2 or higher. TGI also supports ROCm-enabled AMD GPUs (only MI210 and MI250 are tested), details are available in the [Supported Hardware section](./supported_models#supported-hardware) and [AMD documentation](https://rocm.docs.amd.com/en/latest/deploy/docker.html). To launch TGI on ROCm GPUs, please use instead: ```bash docker run --cap-add=SYS_PTRACE --security-opt seccomp=unconfined --device=/dev/kfd --device=/dev/dri --group-add video --ipc=host --shm-size 1g -p 8080:80 -v $volume:/data ghcr.io/huggingface/text-generation-inference:1.4-rocm --model-id $model ``` Once TGI is running, you can use the `generate` endpoint by doing requests. To learn more about how to query the endpoints, check the [Consuming TGI](./basic_tutorials/consuming_tgi) section, where we show examples with utility libraries and UIs. Below you can see a simple snippet to query the endpoint. ```python import requests headers = { "Content-Type": "application/json", } data = { 'inputs': 'What is Deep Learning?', 'parameters': { 'max_new_tokens': 20, }, } response = requests.post('http://127.0.0.1:8080/generate', headers=headers, json=data) print(response.json()) # {'generated_text': '\n\nDeep Learning is a subset of Machine Learning that is concerned with the development of algorithms that can'} ``` ```js async function query() { const response = await fetch( 'http://127.0.0.1:8080/generate', { method: 'POST', headers: { 'Content-Type': 'application/json'}, body: JSON.stringify({ 'inputs': 'What is Deep Learning?', 'parameters': { 'max_new_tokens': 20 } }) } ); } query().then((response) => { console.log(JSON.stringify(response)); }); /// {"generated_text":"\n\nDeep Learning is a subset of Machine Learning that is concerned with the development of algorithms that can"} ``` ```curl curl 127.0.0.1:8080/generate \ -X POST \ -d '{"inputs":"What is Deep Learning?","parameters":{"max_new_tokens":20}}' \ -H 'Content-Type: application/json' ``` To see all possible deploy flags and options, you can use the `--help` flag. It's possible to configure the number of shards, quantization, generation parameters, and more. ```bash docker run ghcr.io/huggingface/text-generation-inference:1.4 --help ```