import torch import torch.distributed from opentelemetry import trace from typing import Optional from transformers import AutoTokenizer from transformers.models.gpt2 import GPT2TokenizerFast from text_generation_server.models import FlashCausalLM from text_generation_server.models.custom_modeling.flash_dbrx_modeling import ( FlashDbrxForCausalLM, DbrxConfig, ) from text_generation_server.utils import ( initialize_torch_distributed, weight_files, Weights, ) tracer = trace.get_tracer(__name__) class FlashDbrx(FlashCausalLM): def __init__( self, model_id: str, revision: Optional[str] = None, quantize: Optional[str] = None, speculator: Optional[str] = None, dtype: Optional[torch.dtype] = None, trust_remote_code: bool = False, ): self.process_group, rank, world_size = initialize_torch_distributed() if torch.cuda.is_available(): device = torch.device(f"cuda:{rank}") dtype = torch.bfloat16 if dtype is None else dtype else: raise NotImplementedError("FlashDBRX is only available on GPU") try: tokenizer = GPT2TokenizerFast.from_pretrained( model_id, revision=revision, padding_side="left", truncation_side="left", trust_remote_code=trust_remote_code, use_fast=True, from_slow=False, ) except: try: tokenizer = AutoTokenizer.from_pretrained( model_id, revision=revision, padding_side="left", truncation_side="left", trust_remote_code=trust_remote_code, use_fast=True, from_slow=False, ) except: # FIXME: change back to model id once the tokenizer.json is merged tokenizer = GPT2TokenizerFast.from_pretrained( "Xenova/dbrx-instruct-tokenizer", revision=revision, padding_side="left", truncation_side="left", trust_remote_code=trust_remote_code, use_fast=True, from_slow=False, ) config = DbrxConfig.from_pretrained( model_id, revision=revision, trust_remote_code=trust_remote_code ) config.quantize = quantize config.speculator = speculator torch.distributed.barrier(group=self.process_group) filenames = weight_files(model_id, revision=revision, extension=".safetensors") weights = Weights(filenames, device, dtype, process_group=self.process_group) if config.quantize in ["gptq", "awq"]: weights._set_gptq_params(model_id, revision) model = FlashDbrxForCausalLM(config, weights) torch.distributed.barrier(group=self.process_group) super(FlashDbrx, self).__init__( model=model, tokenizer=tokenizer, num_layers=len(model.model.layers), num_kv_heads=model.model.num_key_value_heads, head_size=model.model.head_size, dtype=dtype, device=device, rank=rank, world_size=world_size, )