import torch import torch.distributed from typing import Optional from transformers import ( AutoTokenizer, AutoConfig, ) from text_generation_server.models.custom_modeling.opt_modeling import OPTForCausalLM from text_generation_server.models import CausalLM from text_generation_server.utils import ( initialize_torch_distributed, weight_files, Weights, ) class OPTSharded(CausalLM): def __init__( self, model_id: str, revision: Optional[str] = None, quantize: Optional[str] = None, speculator: Optional[str] = None, dtype: Optional[torch.dtype] = None, trust_remote_code: bool = False, ): self.process_group, rank, world_size = initialize_torch_distributed() if torch.cuda.is_available(): device = torch.device(f"cuda:{rank}") dtype = torch.float16 if dtype is None else dtype else: device = torch.device("cpu") dtype = torch.float32 if dtype is None else dtype tokenizer = AutoTokenizer.from_pretrained( model_id, revision=revision, padding_side="left", truncation_side="left", trust_remote_code=trust_remote_code, ) config = AutoConfig.from_pretrained( model_id, revision=revision, trust_remote_code=trust_remote_code, ) config.quantize = quantize config.speculator = speculator tokenizer.pad_token_id = config.pad_token_id torch.distributed.barrier(group=self.process_group) filenames = weight_files(model_id, revision=revision, extension=".safetensors") weights = Weights( filenames, device=device, dtype=dtype, process_group=self.process_group ) if config.quantize == "gptq": weights._set_gptq_params(model_id, revision) model = OPTForCausalLM(config, weights) torch.distributed.barrier(group=self.process_group) super(CausalLM, self).__init__( model=model, tokenizer=tokenizer, requires_padding=True, dtype=dtype, device=device, rank=rank, world_size=world_size, ) def forward( self, input_ids, attention_mask, position_ids, past_key_values: Optional = None ): outputs = self.model.forward( input_ids=input_ids, attention_mask=attention_mask, past_key_values=past_key_values, use_cache=True, ) return outputs.logits, outputs.past_key_values