# Adapted from turboderp exllama: https://github.com/turboderp/exllamav2 import torch import torch.nn as nn from loguru import logger try: from exllamav2_kernels import make_q_matrix, gemm_half_q_half except ImportError: logger.error("exllamav2_kernels not installed.") raise # Dummy tensor to pass instead of g_idx since there is no way to pass "None" to a C++ extension none_tensor = torch.empty((1, 1), device="meta") def ext_gemm_half_q_half(x, q_handle, q4_width, force_cuda): """Matrix multiplication, returns x @ q4""" output_shape = x.shape[:-1] + (q4_width,) x = x.view(-1, x.shape[-1]) output = torch.empty((x.shape[0], q4_width), dtype=torch.half, device=x.device) gemm_half_q_half(x, q_handle, output, force_cuda) return output.view(output_shape) # Group map needed for irregular group sizes def make_group_map(q_groups, num_qrows): gr = q_groups.tolist() group_map = [] num_groups = len(gr) // 2 for i in range(num_groups): bits = gr[i * 2] if i < num_groups - 1: qrows = gr[i * 2 + 3] - gr[i * 2 + 1] else: qrows = num_qrows - gr[i * 2 + 1] rows = qrows * 32 // bits for j in range(rows): group_map += [i] group_map += [rows - j] return torch.tensor(group_map, dtype=torch.short, device=q_groups.device) # Create Q matrix def ext_make_q_matrix(w: dict, temp_dq, key: str = None): """ Create Q matrix """ # EXL2 # won't work as the moment because the tensors are not the same. if "q_weight" in w: w["q_scale_max"] /= 256 w["q_perm"] = w["q_perm"].short() w["q_invperm"] = w["q_invperm"].short() if "q_group_map" not in w: w["q_group_map"] = make_group_map(w["q_groups"], w["q_weight"].shape[0]) return make_q_matrix( w["q_weight"], w["q_perm"], w["q_invperm"], w["q_scale"], w["q_scale_max"], w["q_groups"], w["q_group_map"], none_tensor, none_tensor, none_tensor, temp_dq, ) # GPTQ elif "qweight" in w: if w["scales"].dtype == torch.float: w["scales"] = w["scales"].half() # GPTQ with g_idx (act_order) if w.get("g_idx", None) is not None and not (w["g_idx"] == 0).all().item(): w["q_perm"] = torch.empty( (w["qweight"].shape[0] * 8,), dtype=torch.short, device=w["qweight"].device, ) w["q_invperm"] = torch.empty_like(w["q_perm"]) # make_q4 segfaults if g_idx is not on cpu in the act-order case. In the non act-order case, None needs to be passed for g_idx. return make_q_matrix( w["qweight"], w["q_perm"], w["q_invperm"], none_tensor, none_tensor, none_tensor, none_tensor, w["qzeros"], w["scales"], w["g_idx"].cpu(), temp_dq, ) # GPTQ without g_idx else: return make_q_matrix( w["qweight"], none_tensor, none_tensor, none_tensor, none_tensor, none_tensor, none_tensor, w["qzeros"], w["scales"], none_tensor, temp_dq, ) else: RuntimeError("Cannot create handle") DEVICE = None FIXED_BYTES = 0 LAYERS = [] def set_device(device): global DEVICE DEVICE = device def create_exllama_buffers(max_total_tokens: int): global FIXED_BYTES, LAYERS, DEVICE temp_dq = ExLlamaV2DeviceTensors(DEVICE, FIXED_BYTES) for layer in LAYERS: layer.post_init(temp_dq) class QuantLinear(nn.Module): QUANT_TYPE = "exllamav2" """Linear layer implementation with per-group 4-bit quantization of the weights""" # def __init__(self, bits, group_size, infeatures, outfeatures, bias, trainable=False, **kwargs): def __init__(self, qweight, qzeros, scales, g_idx, bias, bits, groupsize): super().__init__() if bits != 4: raise ValueError( f"Exllamav2 kernel supports only bits=4, requested bits={bits}. Something is wrong in the model initialization." ) self.q_handle = None self.q_tensors = None self.bits = bits self.maxq = 2**self.bits - 1 self.infeatures = qweight.shape[0] // self.bits * 32 self.outfeatures = qweight.shape[1] self.padding = -self.outfeatures % 32 self.outfeatures = self.outfeatures + self.padding self.device = qweight.device self.qweight = qweight self.qzeros = qzeros self.scales = scales self.g_idx = g_idx self.bias = bias if bias is not None else None self.group_size = groupsize global FIXED_BYTES, LAYERS FIXED_BYTES = max(FIXED_BYTES, self.scratch_space_fixed()) LAYERS.append(self) def post_init(self, temp_dq): assert self.qweight.device.type == "cuda" assert self.qweight.device.index is not None self.q_tensors = { "qweight": self.qweight, "qzeros": self.qzeros, "scales": self.scales, "g_idx": self.g_idx, } temp_dq = temp_dq.get_scratch_slice(self.temp_dq_size()) # We NEED to keep a pointer on Python side, otherwise the garbage collector will mess with us, # and `Memory access fault by GPU node-2` will EAT you. self.temp_dq = temp_dq self.q_handle = ext_make_q_matrix(self.q_tensors, temp_dq) def forward(self, x, force_cuda=False): output = ext_gemm_half_q_half(x, self.q_handle, self.outfeatures, force_cuda) if self.bias is not None: output.add_(self.bias) return output def temp_dq_size(self): return self.infeatures * self.outfeatures * 2 + 128 def temp_fwd_size(self, max_input_len, max_batch_size): return self.outfeatures * max_input_len * max_batch_size * 4 + 128 def scratch_space_fixed(self, max_input_len=4096, max_batch_size=16): return self.temp_dq_size() + self.temp_fwd_size(max_input_len, max_batch_size) class ExLlamaV2DeviceTensors: device_idx: int scratch_bytes: int scratch_idx: int scratch: torch.tensor = None def __init__(self, device, scratch_bytes): self.device = device self.scratch_bytes = scratch_bytes def prepare(self): self.scratch = torch.empty( (self.scratch_bytes // 2,), dtype=torch.half, device=self.device ) def get_scratch_slice(self, size_bytes): if self.scratch is None: self.prepare() size_bytes = ((size_bytes + 127) // 128) * 128 size_half = size_bytes // 2 scratch_slice = self.scratch.narrow(0, 0, size_half) return scratch_slice