import torch from torch import nn from accelerate import init_empty_weights from text_generation_server.utils.import_utils import ( SYSTEM, ) # Monkey patching @classmethod def load_layer_norm(cls, prefix, weights, eps): weight = weights.get_tensor(f"{prefix}.weight") bias = weights.get_tensor(f"{prefix}.bias") with init_empty_weights(): ln = cls(weight.shape, eps=eps) ln.weight = torch.nn.Parameter(weight) ln.bias = torch.nn.Parameter(bias) return ln @classmethod def load_layer_norm_no_bias(cls, prefix, weights, eps): weight = weights.get_tensor(f"{prefix}.weight") with init_empty_weights(): ln = cls(weight.shape, eps=eps) ln.weight = torch.nn.Parameter(weight) ln.bias = None return ln torch.nn.LayerNorm.load = load_layer_norm torch.nn.LayerNorm.load_no_bias = load_layer_norm_no_bias if SYSTEM == "cuda": import dropout_layer_norm class FastLayerNorm(nn.LayerNorm): def forward(self, hidden_states, residual=None): if hidden_states.shape[-1] > 8192: if residual is not None: hidden_states += residual residual = hidden_states return super(FastLayerNorm, self).forward(hidden_states), residual else: ( normed_hidden_states, residual, *rest, ) = dropout_layer_norm.dropout_add_ln_fwd( hidden_states, residual, self.weight, self.bias, None, None, None, None, 0.0, self.eps, 1.0, 0, None, False, False, ) if residual is None: residual = hidden_states return normed_hidden_states, residual elif SYSTEM == "rocm": from vllm import layernorm_ops class FastLayerNorm(nn.LayerNorm): def forward(self, hidden_states, residual=None): if residual is not None: hidden_states += residual residual = hidden_states return super().forward(hidden_states), residual elif SYSTEM == "xpu": import intel_extension_for_pytorch as ipex class FastLayerNorm(nn.LayerNorm): def forward(self, hidden_states, residual=None): res_out = hidden_states out = ipex.llm.functional.add_layer_norm( residual, hidden_states, self.weight, self.bias, self.eps, True ) if residual is not None: res_out = residual return out, res_out class FastRMSNorm(nn.Module): def __init__(self, weight: torch.Tensor, eps: float): super().__init__() self.weight = nn.Parameter(weight) self.variance_epsilon = eps @classmethod def load(cls, prefix, weights, eps=1e-6): weight = weights.get_tensor(f"{prefix}.weight") return cls(weight, eps) def forward(self, hidden_states, residual=None): if SYSTEM == "xpu": residual_out = hidden_states out = ipex.llm.functional.add_rms_norm( residual, hidden_states, self.weight, None, self.variance_epsilon, True, ) if residual is not None: residual_out = residual return out, residual_out elif hidden_states.shape[-1] > 8192: if residual is not None: hidden_states += residual residual = hidden_states hidden_states = hidden_states.to(torch.float32) variance = hidden_states.pow(2).mean(-1, keepdim=True) hidden_states = hidden_states * torch.rsqrt( variance + self.variance_epsilon ) # convert into half-precision if necessary if self.weight.dtype in [torch.float16, torch.bfloat16]: hidden_states = hidden_states.to(self.weight.dtype) return self.weight * hidden_states, residual elif SYSTEM == "cuda": # faster post attention rms norm ( normed_hidden_states, res, *rest, ) = dropout_layer_norm.dropout_add_ln_fwd( hidden_states, residual, self.weight, None, None, None, None, None, 0.0, self.variance_epsilon, 1.0, 0, None, False, True, # Activate RMSNorm ) if res is None: res = hidden_states return normed_hidden_states, res elif SYSTEM == "rocm": # We use VLLM RMSNorm kernel that can be compiled for RoCm, instead of Flash Attention ones that can not. if residual is not None: hidden_states += residual residual = hidden_states out = torch.empty_like(hidden_states) layernorm_ops.rms_norm( out, hidden_states, self.weight.data, self.variance_epsilon, ) return out, residual else: raise ValueError( "Your system seem to be not supported. Please check your install or open an issue at https://github.com/huggingface/text-generation-inference/issues with a clear reproduction." )