import torch import torch.distributed from opentelemetry import trace from typing import Optional from text_generation_server.models import FlashCausalLM from text_generation_server.models.custom_modeling.flash_gemma_modeling import ( GemmaTokenizerFast, FlashGemmaForCausalLM, GemmaConfig, ) from text_generation_server.utils import ( initialize_torch_distributed, weight_files, Weights, ) tracer = trace.get_tracer(__name__) class FlashGemma(FlashCausalLM): def __init__( self, model_id: str, revision: Optional[str] = None, quantize: Optional[str] = None, dtype: Optional[torch.dtype] = None, trust_remote_code: bool = False, use_medusa: Optional[str] = None, ): self.process_group, rank, world_size = initialize_torch_distributed() if torch.cuda.is_available(): device = torch.device(f"cuda:{rank}") dtype = torch.bfloat16 if dtype is None else dtype else: raise NotImplementedError("FlashGemma is only available on GPU") tokenizer = GemmaTokenizerFast.from_pretrained( model_id, revision=revision, padding_side="left", truncation_side="left", trust_remote_code=trust_remote_code, use_fast=True, from_slow=False, ) config = GemmaConfig.from_pretrained( model_id, revision=revision, trust_remote_code=trust_remote_code ) config.quantize = quantize torch.distributed.barrier(group=self.process_group) filenames = weight_files(model_id, revision=revision, extension=".safetensors") weights = Weights(filenames, device, dtype, process_group=self.process_group) if config.quantize in ["gptq", "awq"]: weights._set_gptq_params(model_id, revision) model = FlashGemmaForCausalLM(config, weights) if use_medusa: from text_generation_server.utils.medusa import MedusaModel from huggingface_hub import hf_hub_download import json import os from pathlib import Path is_local_model = ( Path(use_medusa).exists() and Path(use_medusa).is_dir() ) or os.getenv("WEIGHTS_CACHE_OVERRIDE", None) is not None if not is_local_model: medusa_config = hf_hub_download( use_medusa, revision=revision, filename="config.json" ) medusa_head = hf_hub_download( use_medusa, revision=revision, filename="medusa_lm_head.pt" ) else: medusa_config = str(Path(use_medusa) / "config.json") medusa_head = str(Path(use_medusa) / "medusa_lm_head.pt") with open(medusa_config, "r") as f: config = json.load(f) medusa_sf = medusa_head[: -len(".pt")] + ".safetensors" weights = Weights( [medusa_sf], device, dtype, process_group=self.process_group ) lm_head = model.lm_head model.lm_head = MedusaModel(config, weights, lm_head) torch.distributed.barrier(group=self.process_group) super(FlashGemma, self).__init__( model=model, tokenizer=tokenizer, num_layers=len(model.model.layers), num_kv_heads=model.model.num_key_value_heads, head_size=model.model.head_size, dtype=dtype, device=device, rank=rank, world_size=world_size, )