import os import torch import torch.distributed from opentelemetry import trace from transformers import AutoConfig, AutoTokenizer, GenerationConfig from typing import Optional, Tuple, Dict, List from text_generation_server.models import FlashCausalLM from text_generation_server.models.custom_modeling.flash_llama_modeling import ( FlashLlamaForCausalLM, ) from text_generation_server.utils import ( initialize_torch_distributed, weight_files, Weights, hub, ) tracer = trace.get_tracer(__name__) from text_generation_server.utils.import_utils import SYSTEM ADAPTER_LAYERS = [ "q_proj", "k_proj", "v_proj", "o_proj", "gate_proj", "up_proj", "down_proj", ] ROW_PARALLEL = {"o_proj", "down_proj", "lm_head"} class FlashLlama(FlashCausalLM): def __init__( self, model_id: str, revision: Optional[str] = None, quantize: Optional[str] = None, speculator: Optional[str] = None, dtype: Optional[torch.dtype] = None, trust_remote_code: bool = False, lora_adapter_ids: Optional[list] = [], ): self.process_group, rank, world_size = initialize_torch_distributed() if torch.cuda.is_available(): device = torch.device(f"cuda:{rank}") dtype = torch.float16 if dtype is None else dtype elif SYSTEM == "ipex": if hasattr(torch, "xpu") and torch.xpu.is_available(): device = torch.device(f"xpu:{rank}") dtype = torch.float16 if dtype is None else dtype else: device = torch.device("cpu") dtype = torch.bfloat16 if dtype is None else dtype else: raise NotImplementedError("FlashLlama is only available on GPU") tokenizer = AutoTokenizer.from_pretrained( model_id, revision=revision, padding_side="left", truncation_side="left", trust_remote_code=trust_remote_code, ) try: generation_config = GenerationConfig.from_pretrained( model_id, revision=revision, trust_remote_code=trust_remote_code ) if isinstance(generation_config.eos_token_id, (list, set)): # TODO Huge hack tokenizer._eos_token_ids = set(generation_config.eos_token_id) except Exception: pass config = AutoConfig.from_pretrained( model_id, revision=revision, trust_remote_code=trust_remote_code ) config.quantize = quantize config.speculator = speculator torch.distributed.barrier(group=self.process_group) filenames = weight_files(model_id, revision=revision, extension=".safetensors") weights = Weights(filenames, device, dtype, process_group=self.process_group) if config.quantize in ["awq", "exl2", "gptq", "marlin"]: weights._set_gptq_params(model_id, revision) prefix = "" model = FlashLlamaForCausalLM(prefix, config, weights) torch.distributed.barrier(group=self.process_group) super(FlashLlama, self).__init__( model_id=model_id, model=model, tokenizer=tokenizer, num_layers=len(model.model.layers), num_kv_heads=model.model.num_key_value_heads, head_size=model.model.head_size, dtype=dtype, device=device, rank=rank, world_size=world_size, ) @property def supports_adapter_loading(self) -> bool: return True def adapter_target_to_layer(self) -> Dict[str, Tuple[str, torch.Tensor]]: layer_weights = {} prefix = "model.layers" # This accounts for VLMs (e.g. LlavaNext, Idefics2) # that have a language_model inside of the larger model. if hasattr(self.model, "language_model"): _model = self.model.language_model elif hasattr(self.model, "text_model"): _model = self.model.text_model else: _model = self.model for i, layer in enumerate(_model.model.layers): layer_weights[(i, "q_proj")] = ( f"{prefix}.{i}.self_attn.q_proj", layer.self_attn.query_key_value, ) layer_weights[(i, "k_proj")] = ( f"{prefix}.{i}.self_attn.k_proj", layer.self_attn.query_key_value, ) layer_weights[(i, "v_proj")] = ( f"{prefix}.{i}.self_attn.v_proj", layer.self_attn.query_key_value, ) layer_weights[(i, "o_proj")] = ( f"{prefix}.{i}.self_attn.o_proj", layer.self_attn.o_proj, ) layer_weights[(i, "gate_proj")] = ( f"{prefix}.{i}.mlp.gate_proj", layer.mlp.gate_up_proj, ) layer_weights[(i, "up_proj")] = ( f"{prefix}.{i}.mlp.up_proj", layer.mlp.gate_up_proj, ) layer_weights[(i, "down_proj")] = ( f"{prefix}.{i}.mlp.down_proj", layer.mlp.down_proj, ) layer_weights[(0, "lm_head")] = ("lm_head", _model.lm_head) return layer_weights @property def adapter_layers(self) -> List[str]: return ADAPTER_LAYERS @property def default_traced_adapter_layers(self) -> List[str]: return ["q_proj", "v_proj"] def get_num_layers_for_type(self, layer_type: str) -> int: return 1 if layer_type == "lm_head" else len(self.model.model.layers) def is_row_parallel(self, layer_type: str) -> bool: return layer_type in ROW_PARALLEL