import torch import torch.distributed from opentelemetry import trace from transformers import AutoTokenizer, AutoConfig from typing import Optional from text_generation_server.models import FlashCausalLM from text_generation_server.models.custom_modeling.flash_neox_modeling import ( FlashGPTNeoXForCausalLM, ) from text_generation_server.utils import ( initialize_torch_distributed, weight_files, Weights, ) from text_generation_server.utils.import_utils import SYSTEM tracer = trace.get_tracer(__name__) class FlashNeoXSharded(FlashCausalLM): def __init__( self, model_id: str, revision: Optional[str] = None, quantize: Optional[str] = None, speculator: Optional[str] = None, dtype: Optional[torch.dtype] = None, trust_remote_code: bool = False, ): self.process_group, rank, world_size = initialize_torch_distributed() if torch.cuda.is_available(): device = torch.device(f"cuda:{rank}") dtype = torch.float16 if dtype is None else dtype elif SYSTEM == "ipex": if hasattr(torch, "xpu") and torch.xpu.is_available(): device = torch.device(f"xpu:{rank}") dtype = torch.float16 if dtype is None else dtype else: device = torch.device("cpu") dtype = torch.bfloat16 if dtype is None else dtype else: raise NotImplementedError("FlashNeoX is only available on GPU") tokenizer = AutoTokenizer.from_pretrained( model_id, revision=revision, padding_side="left", truncation_side="left", trust_remote_code=trust_remote_code, ) config = AutoConfig.from_pretrained( model_id, revision=revision, trust_remote_code=trust_remote_code ) config.quantize = quantize config.speculator = speculator torch.distributed.barrier(group=self.process_group) filenames = weight_files(model_id, revision=revision, extension=".safetensors") weights = Weights( filenames, device=device, dtype=dtype, process_group=self.process_group ) if config.quantize in ["gptq", "marlin"]: weights._set_gptq_params(model_id, revision) model = FlashGPTNeoXForCausalLM(config, weights) torch.distributed.barrier(group=self.process_group) super(FlashNeoXSharded, self).__init__( model_id=model_id, model=model.to(device), tokenizer=tokenizer, num_layers=len(model.gpt_neox.layers), num_kv_heads=model.gpt_neox.num_heads, head_size=model.gpt_neox.head_size, dtype=dtype, device=device, rank=rank, world_size=world_size, )