import torch from text_generation.models.model import Model from text_generation.models.causal_lm import CausalLM from text_generation.models.bloom import BLOOM, BLOOMSharded from text_generation.models.seq2seq_lm import Seq2SeqLM from text_generation.models.galactica import Galactica, GalacticaSharded from text_generation.models.santacoder import SantaCoder __all__ = [ "Model", "BLOOM", "BLOOMSharded", "CausalLM", "Seq2SeqLM", "SantaCoder", "get_model", ] # The flag below controls whether to allow TF32 on matmul. This flag defaults to False # in PyTorch 1.12 and later. torch.backends.cuda.matmul.allow_tf32 = True # The flag below controls whether to allow TF32 on cuDNN. This flag defaults to True. torch.backends.cudnn.allow_tf32 = True def get_model(model_name: str, sharded: bool, quantize: bool) -> Model: if model_name.startswith("bigscience/bloom"): if sharded: return BLOOMSharded(model_name, quantize=quantize) else: return BLOOM(model_name, quantize=quantize) elif model_name.startswith("facebook/galactica"): if sharded: return GalacticaSharded(model_name, quantize=quantize) else: return Galactica(model_name, quantize=quantize) elif "santacoder" in model_name: return SantaCoder(model_name, quantize) else: if sharded: raise ValueError("sharded is not supported for AutoModel") try: return CausalLM(model_name, quantize=quantize) except Exception: return Seq2SeqLM(model_name, quantize=quantize)