#include #include #include #include #include "backend.h" #include "hardware.h" void huggingface::tgi::backends::InitializeBackend() { SPDLOG_INFO("Initializing Backend..."); nvmlInit_v2(); initTrtLlmPlugins(); const auto numGpus = huggingface::hardware::cuda::GetNumDevices(); if (numGpus.has_value()) { SPDLOG_INFO("Detected {:d} Nvidia GPU(s)", numGpus.value()); } else { SPDLOG_WARN("Failed to detected Nvidia GPU(s) on the system"); } } [[nodiscard]] tle::ExecutorConfig huggingface::tgi::backends::GetExecutorConfig(const json &config, const std::string &workerPath) { tle::ExecutorConfig execConfig(1); // Retrieve the compute capabilities to enable some options at runtime const auto computeCapabilities = huggingface::hardware::cuda::GetCudaComputeCapabilities(); // Single engine (TP = PP = 1) -> using leader mode (no MPI involved) if (config["/pretrained_config/mapping/world_size"_json_pointer].get() == 1) { SPDLOG_INFO("Detected single engine deployment, using leader mode"); execConfig.setParallelConfig(tle::ParallelConfig( tle::CommunicationType::kMPI, tle::CommunicationMode::kLEADER, std::nullopt, std::nullopt, std::nullopt )); } else { // Multiple engines -> using orchestrator mode (MPI involved) SPDLOG_INFO("Detected sharded engine deployment, using orchestrator mode"); execConfig.setParallelConfig(tle::ParallelConfig( tle::CommunicationType::kMPI, tle::CommunicationMode::kORCHESTRATOR, std::nullopt, std::nullopt, tle::OrchestratorConfig(true, workerPath, nullptr, true) )); } // Define some configuration variables execConfig.setKvCacheConfig(tle::KvCacheConfig(true)); execConfig.setEnableChunkedContext(computeCapabilities.isPostAmpere()); return execConfig; } tle::SamplingConfig huggingface::tgi::backends::GetSamplingConfig( uint32_t topK, float_t topP, float_t temperature, float_t repetition_penalty, float_t frequency_penalty, uint64_t seed) { return tle::SamplingConfig( 1, // TGI only use a single beam topK, topP, std::nullopt, std::nullopt, std::nullopt, seed, temperature, temperature, std::nullopt, repetition_penalty, std::nullopt, frequency_penalty ); } huggingface::tgi::backends::TensorRtLlmBackend::TensorRtLlmBackend( const std::filesystem::path &enginesFolder, const std::filesystem::path &executorWorker ) : config(json::parse(std::ifstream(enginesFolder / "config.json"))), executor( enginesFolder, tensorrt_llm::executor::ModelType::kDECODER_ONLY, GetExecutorConfig(config, executorWorker.string() )) { SPDLOG_INFO(FMT_STRING("Engine (version={})"), config["/version"_json_pointer].get_ref()); } bool huggingface::tgi::backends::TensorRtLlmBackend::IsReady() const { return executor.canEnqueueRequests(); } [[nodiscard("Returned number of requests needs to be consumed")]] size_t huggingface::tgi::backends::TensorRtLlmBackend::NumResponsesReady() const { return executor.getNumResponsesReady(); } [[nodiscard("Returned request id needs to be provided back to gather generated tokens")]] tle::IdType huggingface::tgi::backends::TensorRtLlmBackend::Submit( const std::vector &tokens, const int32_t topK, const float_t topP, const float_t temperature, const float_t repetition_penalty, const float_t frequency_penalty, const uint64_t seed ) { #ifdef NDEBUG SPDLOG_DEBUG( FMT_STRING("Submitting inference over {:d} tokens to the executor ({:d} already in-flight)"), tokens.size(), executor.getLatestIterationStats().back().numActiveRequests ); #else SPDLOG_DEBUG( FMT_STRING("Submitting inference [{}] to the executor ({:d} already in-flight)"), fmt::join(tokens, ", "), executor.getLatestIterationStats().front().numActiveRequests ); #endif const auto maxNumTokens = config["/build_config/max_num_tokens"_json_pointer].get(); const auto maxNewTokens = static_cast(std::max(1ul, maxNumTokens - tokens.size())); const auto sampling = GetSamplingConfig(topK, topP, temperature, repetition_penalty, frequency_penalty, seed); const auto output = tle::OutputConfig(true, false, false, true, false); return executor.enqueueRequest( tle::Request{tokens, maxNewTokens, true, sampling, output}); } [[nodiscard("Generated tokens result must be used")]] std::vector huggingface::tgi::backends::TensorRtLlmBackend::Poll(const tle::IdType requestId) { SPDLOG_DEBUG(FMT_STRING("Polling status for request {:d}"), requestId); return executor.awaitResponses(requestId); } void huggingface::tgi::backends::TensorRtLlmBackend::Shutdown() { SPDLOG_INFO("Shutting down executor"); executor.shutdown(); }