import time import os from datetime import timedelta from loguru import logger from pathlib import Path from typing import Optional, List from huggingface_hub import file_download, hf_api, HfApi, hf_hub_download from huggingface_hub.constants import HUGGINGFACE_HUB_CACHE from huggingface_hub.utils import ( LocalEntryNotFoundError, EntryNotFoundError, RevisionNotFoundError, # noqa # Import here to ease try/except in other part of the lib ) WEIGHTS_CACHE_OVERRIDE = os.getenv("WEIGHTS_CACHE_OVERRIDE", None) HF_HUB_OFFLINE = os.environ.get("HF_HUB_OFFLINE", "0").lower() in ["true", "1", "yes"] def _cached_weight_files(model_id: str, revision: Optional[str], extension: str) -> List[str]: """Guess weight files from the cached revision snapshot directory""" d = _get_cached_revision_directory(model_id, revision) if not d: return [] filenames = _weight_files_from_dir(d, extension) return filenames def _weight_hub_files_from_model_info(info: hf_api.ModelInfo, extension: str) -> List[str]: return [ s.rfilename for s in info.siblings if s.rfilename.endswith(extension) and len(s.rfilename.split("/")) == 1 and "arguments" not in s.rfilename and "args" not in s.rfilename and "training" not in s.rfilename ] def _weight_files_from_dir(d: Path, extension: str) -> List[str]: # os.walk: do not iterate, just scan for depth 1, not recursively # see _weight_hub_files_from_model_info, that's also what is # done there with the len(s.rfilename.split("/")) == 1 condition root, _, files = next(os.walk(str(d))) filenames = [f for f in files if f.endswith(extension) and "arguments" not in f and "args" not in f and "training" not in f] return filenames def _get_cached_revision_directory(model_id: str, revision: Optional[str]) -> Optional[Path]: if revision is None: revision = "main" repo_cache = Path(HUGGINGFACE_HUB_CACHE) / Path( file_download.repo_folder_name(repo_id=model_id, repo_type="model")) if not repo_cache.is_dir(): # No cache for this model return None refs_dir = repo_cache / "refs" snapshots_dir = repo_cache / "snapshots" # Resolve refs (for instance to convert main to the associated commit sha) if refs_dir.is_dir(): revision_file = refs_dir / revision if revision_file.exists(): with revision_file.open() as f: revision = f.read() # Check if revision folder exists if not snapshots_dir.exists(): return None cached_shas = os.listdir(snapshots_dir) if revision not in cached_shas: # No cache for this revision and we won't try to return a random revision return None return snapshots_dir / revision def weight_hub_files( model_id: str, revision: Optional[str] = None, extension: str = ".safetensors" ) -> List[str]: """Get the weights filenames on the hub""" api = HfApi() if HF_HUB_OFFLINE: filenames = _cached_weight_files(model_id, revision, extension) else: # Online case, fetch model info from the Hub info = api.model_info(model_id, revision=revision) filenames = _weight_hub_files_from_model_info(info, extension) if not filenames: raise EntryNotFoundError( f"No {extension} weights found for model {model_id} and revision {revision}.", None, ) return filenames def try_to_load_from_cache( model_id: str, revision: Optional[str], filename: str ) -> Optional[Path]: """Try to load a file from the Hugging Face cache""" d = _get_cached_revision_directory(model_id, revision) if not d: return None # Check if file exists in cache cached_file = d / filename return cached_file if cached_file.is_file() else None def weight_files( model_id: str, revision: Optional[str] = None, extension: str = ".safetensors" ) -> List[Path]: """Get the local files""" # Local model d = Path(model_id) if d.exists() and d.is_dir(): local_files = _weight_files_from_dir(d, extension) if not local_files: raise FileNotFoundError( f"No local weights found in {model_id} with extension {extension}" ) return [Path(f) for f in local_files] try: filenames = weight_hub_files(model_id, revision, extension) except EntryNotFoundError as e: if extension != ".safetensors": raise e # Try to see if there are pytorch weights pt_filenames = weight_hub_files(model_id, revision, extension=".bin") # Change pytorch extension to safetensors extension # It is possible that we have safetensors weights locally even though they are not on the # hub if we converted weights locally without pushing them filenames = [ f"{Path(f).stem.lstrip('pytorch_')}.safetensors" for f in pt_filenames ] if WEIGHTS_CACHE_OVERRIDE is not None: files = [] for filename in filenames: p = Path(WEIGHTS_CACHE_OVERRIDE) / filename if not p.exists(): raise FileNotFoundError( f"File {p} not found in {WEIGHTS_CACHE_OVERRIDE}." ) files.append(p) return files files = [] for filename in filenames: cache_file = try_to_load_from_cache( model_id, revision=revision, filename=filename ) if cache_file is None: raise LocalEntryNotFoundError( f"File {filename} of model {model_id} not found in " f"{os.getenv('HUGGINGFACE_HUB_CACHE', 'the local cache')}. " f"Please run `text-generation-server download-weights {model_id}` first." ) files.append(cache_file) return files def download_weights( filenames: List[str], model_id: str, revision: Optional[str] = None ) -> List[Path]: """Download the safetensors files from the hub""" def download_file(fname, tries=5, backoff: int = 5): local_file = try_to_load_from_cache(model_id, revision, fname) if local_file is not None: logger.info(f"File {fname} already present in cache.") return Path(local_file) for idx in range(tries): try: logger.info(f"Download file: {fname}") stime = time.time() local_file = hf_hub_download( filename=fname, repo_id=model_id, revision=revision, local_files_only=HF_HUB_OFFLINE, ) logger.info( f"Downloaded {local_file} in {timedelta(seconds=int(time.time() - stime))}." ) return Path(local_file) except Exception as e: if idx + 1 == tries: raise e logger.error(e) logger.info(f"Retrying in {backoff} seconds") time.sleep(backoff) logger.info(f"Retry {idx + 1}/{tries - 1}") # We do this instead of using tqdm because we want to parse the logs with the launcher start_time = time.time() files = [] for i, filename in enumerate(filenames): file = download_file(filename) elapsed = timedelta(seconds=int(time.time() - start_time)) remaining = len(filenames) - (i + 1) eta = (elapsed / (i + 1)) * remaining if remaining > 0 else 0 logger.info(f"Download: [{i + 1}/{len(filenames)}] -- ETA: {eta}") files.append(file) return files