import torch import torch.distributed from typing import Optional, Type from transformers import ( AutoTokenizer, AutoConfig, PreTrainedTokenizerBase, ) from text_generation_server.models.custom_modeling.bloom_modeling import ( BloomForCausalLM, ) from text_generation_server.models import CausalLM from text_generation_server.models.causal_lm import CausalLMBatch from text_generation_server.pb import generate_pb2 from text_generation_server.utils import ( initialize_torch_distributed, weight_files, Weights, ) class BloomCausalLMBatch(CausalLMBatch): @classmethod def from_pb( cls, pb: generate_pb2.Batch, tokenizer: PreTrainedTokenizerBase, dtype: torch.dtype, device: torch.device, ) -> "CausalLMBatch": batch = super().from_pb(pb=pb, tokenizer=tokenizer, dtype=dtype, device=device) batch.keys_head_dim_last = False return batch class BLOOMSharded(CausalLM): def __init__( self, model_id: str, revision: Optional[str] = None, quantize: Optional[str] = None, use_medusa: Optional[str] = None, dtype: Optional[torch.dtype] = None, trust_remote_code: bool = False, ): self.process_group, rank, world_size = initialize_torch_distributed() if torch.cuda.is_available(): device = torch.device(f"cuda:{rank}") dtype = torch.float16 if dtype is None else dtype else: device = torch.device("cpu") dtype = torch.float32 if dtype is None else dtype tokenizer = AutoTokenizer.from_pretrained( model_id, revision=revision, padding_side="left", truncation_side="left", trust_remote_code=trust_remote_code, ) config = AutoConfig.from_pretrained( model_id, revision=revision, slow_but_exact=False, tp_parallel=True, trust_remote_code=trust_remote_code, ) config.pad_token_id = 3 config.quantize = quantize config.use_medusa = use_medusa torch.distributed.barrier(group=self.process_group) filenames = weight_files(model_id, revision=revision, extension=".safetensors") weights = Weights( filenames, device=device, dtype=dtype, process_group=self.process_group, prefix="transformer", ) if config.quantize == "gptq": weights._set_gptq_params(model_id, revision) model = BloomForCausalLM(config, weights) torch.distributed.barrier(group=self.process_group) super(CausalLM, self).__init__( model=model, tokenizer=tokenizer, requires_padding=True, dtype=dtype, device=device, rank=rank, world_size=world_size, ) @property def batch_type(self) -> Type[CausalLMBatch]: return BloomCausalLMBatch def forward( self, input_ids, attention_mask, position_ids, past_key_values: Optional = None ): outputs, speculative_logits = self.model.forward( input_ids=input_ids, attention_mask=attention_mask, position_ids=position_ids, past_key_values=past_key_values, use_cache=True, ) logits = outputs.logits return logits, speculative_logits, outputs.past_key_values