from pathlib import Path from typing import List from safetensors import safe_open class Weights: def __init__(self, filenames: List[Path], device, dtype, process_group): routing = {} for filename in filenames: with safe_open(filename, framework="pytorch") as f: for k in f.keys(): if k in routing: raise RuntimeError( f"Key {k} was found in multiple files: {filename} and {routing[k]}" ) routing[k] = filename self.routing = routing self.device = device self.dtype = dtype self.process_group = process_group self._handles = {} def _get_handle(self, filename): if filename not in self._handles: f = safe_open(filename, framework="pytorch") self._handles[filename] = f return self._handles[filename] def get_filename(self, tensor_name: str) -> str: filename = self.routing.get(tensor_name, None) if filename is None: raise RuntimeError(f"weight {tensor_name} does not exist") return str(filename) def _get_slice(self, tensor_name: str): filename = self.get_filename(tensor_name) f = self._get_handle(filename) slice_ = f.get_slice(tensor_name) return slice_ def get_shape(self, tensor_name: str): return self._get_slice(tensor_name).get_shape() def get_tensor(self, tensor_name: str): filename = self.get_filename(tensor_name) f = self._get_handle(filename) tensor = f.get_tensor(tensor_name) tensor = tensor.to(dtype=self.dtype) tensor = tensor.to(device=self.device) return tensor def get_sharded(self, tensor_name: str, dim: int): filename = self.get_filename(tensor_name) world_size = self.process_group.size() rank = self.process_group.rank() f = self._get_handle(filename) slice_ = f.get_slice(tensor_name) size = slice_.get_shape()[dim] block_size = size // world_size start = rank * block_size stop = (rank + 1) * block_size assert ( size % world_size == 0 ), f"The choosen size {size} is not compatible with sharding on {world_size} shards" if dim == 0: tensor = slice_[start:stop] elif dim == 1: tensor = slice_[:, start:stop] else: raise NotImplementedError("Let's make that generic when needed") tensor = tensor.to(dtype=self.dtype) tensor = tensor.to(device=self.device) return tensor