from text_generation_server.layers.gptq import GPTQWeight import torch from exllama_kernels import make_q4, q4_matmul, prepare_buffers, set_tuning_params # Dummy tensor to pass instead of g_idx since there is no way to pass "None" to a C++ extension none_tensor = torch.empty((1, 1), device="meta") def ext_make_q4(qweight, qzeros, scales, g_idx, device): """Construct Q4Matrix, return handle""" return make_q4( qweight, qzeros, scales, g_idx if g_idx is not None else none_tensor, device ) def ext_q4_matmul(x, q4, q4_width): """Matrix multiplication, returns x @ q4""" outshape = x.shape[:-1] + (q4_width,) x = x.view(-1, x.shape[-1]) output = torch.empty((x.shape[0], q4_width), dtype=torch.float16, device=x.device) q4_matmul(x, q4, output) return output.view(outshape) MAX_DQ = 1 MAX_INNER = 1 ACT_ORDER = False DEVICE = None TEMP_STATE = None TEMP_DQ = None def set_device(device): global DEVICE DEVICE = device def create_exllama_buffers(max_total_tokens: int): global MAX_DQ, MAX_INNER, ACT_ORDER, DEVICE, TEMP_STATE, TEMP_DQ assert DEVICE is not None, "call set_device first" if not ACT_ORDER: max_total_tokens = 1 # This temp_state buffer is required to reorder X in the act-order case. temp_state = torch.zeros( (max_total_tokens, MAX_INNER), dtype=torch.float16, device=DEVICE ) temp_dq = torch.zeros((1, MAX_DQ), dtype=torch.float16, device=DEVICE) # This temp_dq buffer is required to dequantize weights when using cuBLAS, typically for the prefill. prepare_buffers(DEVICE, temp_state, temp_dq) matmul_recons_thd = 8 matmul_fused_remap = False matmul_no_half2 = False set_tuning_params(matmul_recons_thd, matmul_fused_remap, matmul_no_half2) TEMP_STATE, TEMP_DQ = temp_state, temp_dq class Ex4bitLinear(torch.nn.Module): """Linear layer implementation with per-group 4-bit quantization of the weights""" def __init__(self, weight: GPTQWeight, bias): super().__init__() global MAX_DQ, MAX_INNER, ACT_ORDER, DEVICE assert weight.bits == 4 self.device = weight.qweight.device self.qweight = weight.qweight self.qzeros = weight.qzeros self.scales = weight.scales self.g_idx = weight.g_idx.cpu() if weight.g_idx is not None else None self.bias = bias if bias is not None else None if self.g_idx is not None and ( (self.g_idx == 0).all() or torch.equal( weight.g_idx.cpu(), torch.tensor( [i // weight.groupsize for i in range(weight.g_idx.shape[0])], dtype=torch.int32, ), ) ): self.empty_g_idx = True self.g_idx = None assert self.device.type == "cuda" assert self.device.index is not None self.q4 = ext_make_q4( self.qweight, self.qzeros, self.scales, self.g_idx, self.device.index ) self.height = weight.qweight.shape[0] * 8 self.width = weight.qweight.shape[1] # Infer groupsize from height of qzeros self.groupsize = None if self.qzeros.shape[0] > 1: self.groupsize = (self.qweight.shape[0] * 8) // (self.qzeros.shape[0]) if self.groupsize is not None: assert weight.groupsize == self.groupsize # Handle act-order matrix if self.g_idx is not None: if self.groupsize is None: raise ValueError("Found group index but no groupsize. What do?") self.act_order = True else: self.act_order = False DEVICE = self.qweight.device MAX_DQ = max(MAX_DQ, self.qweight.numel() * 8) if self.act_order: MAX_INNER = max(MAX_INNER, self.height, self.width) ACT_ORDER = True def forward(self, x): out = ext_q4_matmul(x, self.q4, self.width) if self.bias is not None: out.add_(self.bias) return out