/* * Modified by Neural Magic * Copyright (C) Marlin.2024 Elias Frantar * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ /* * Adapted from https://github.com/IST-DASLab/marlin */ #include "./gptq_marlin.cuh" #include "./gptq_marlin_dtypes.cuh" using namespace gptq_marlin; #define STATIC_ASSERT_SCALAR_TYPE_VALID(scalar_t) \ static_assert(std::is_same::value || \ std::is_same::value, \ "only float16 and bfloat16 is supported"); template inline std::string str(T x) { return std::to_string(x); } namespace fp8_marlin { #if defined(__CUDA_ARCH__) && __CUDA_ARCH__ < 800 template shared // fetch pipeline const int group_blocks = -1 // number of consecutive 16x16 blocks // with a separate quantization scale > __global__ void Marlin( const int4* __restrict__ A, // fp16 input matrix of shape mxk const int4* __restrict__ B, // 4bit quantized weight matrix of shape kxn int4* __restrict__ C, // fp16 output buffer of shape mxn const int4* __restrict__ scales_ptr, // fp16 quantization scales of shape // (k/groupsize)xn int num_groups, // number of scale groups per output channel int prob_m, // batch dimension m int prob_n, // output dimension n int prob_k, // reduction dimension k int* locks // extra global storage for barrier synchronization ) {} } // namespace fp8_marlin torch::Tensor fp8_marlin_gemm(torch::Tensor& a, torch::Tensor& b_q_weight, torch::Tensor& b_scales, torch::Tensor& workspace, int64_t num_bits, int64_t size_m, int64_t size_n, int64_t size_k) { TORCH_CHECK_NOT_IMPLEMENTED(false, "marlin_gemm(..) requires CUDA_ARCH >= 8.0"); return torch::empty({1, 1}); } #else // m16n8k16 tensor core mma instruction with fp16 inputs and fp32 // output/accumulation. template __device__ inline void mma(const typename ScalarType::FragA& a_frag, const typename ScalarType::FragB& frag_b, typename ScalarType::FragC& frag_c) { const uint32_t* a = reinterpret_cast(&a_frag); const uint32_t* b = reinterpret_cast(&frag_b); float* c = reinterpret_cast(&frag_c); if constexpr (std::is_same::value) { asm volatile( "mma.sync.aligned.m16n8k16.row.col.f32.f16.f16.f32 " "{%0,%1,%2,%3}, {%4,%5,%6,%7}, {%8,%9}, {%10,%11,%12,%13};\n" : "=f"(c[0]), "=f"(c[1]), "=f"(c[2]), "=f"(c[3]) : "r"(a[0]), "r"(a[1]), "r"(a[2]), "r"(a[3]), "r"(b[0]), "r"(b[1]), "f"(c[0]), "f"(c[1]), "f"(c[2]), "f"(c[3])); } else if constexpr (std::is_same::value) { asm volatile( "mma.sync.aligned.m16n8k16.row.col.f32.bf16.bf16.f32 " "{%0,%1,%2,%3}, {%4,%5,%6,%7}, {%8,%9}, {%10,%11,%12,%13};\n" : "=f"(c[0]), "=f"(c[1]), "=f"(c[2]), "=f"(c[3]) : "r"(a[0]), "r"(a[1]), "r"(a[2]), "r"(a[3]), "r"(b[0]), "r"(b[1]), "f"(c[0]), "f"(c[1]), "f"(c[2]), "f"(c[3])); } else { STATIC_ASSERT_SCALAR_TYPE_VALID(scalar_t); } } // Instruction for loading a full 16x16 matrix fragment of operand A from shared // memory, directly in tensor core layout. template __device__ inline void ldsm4(typename ScalarType::FragA& frag_a, const void* smem_ptr) { uint32_t* a = reinterpret_cast(&frag_a); uint32_t smem = static_cast(__cvta_generic_to_shared(smem_ptr)); asm volatile("ldmatrix.sync.aligned.m8n8.x4.shared.b16 {%0,%1,%2,%3}, [%4];\n" : "=r"(a[0]), "=r"(a[1]), "=r"(a[2]), "=r"(a[3]) : "r"(smem)); } // Fast FP8ToFp16/FP8ToBf16: Efficiently dequantize 8bit fp8_e4m3 values to fp16 // bf16 Reference: // - FP16: // https://github.com/NVIDIA/FasterTransformer/blob/release/v5.3_tag/src/fastertransformer/cutlass_extensions/include/cutlass_extensions/interleaved_numeric_conversion.h#L53-L85 // - BF16: // https://github.com/NVIDIA/FasterTransformer/blob/release/v5.3_tag/src/fastertransformer/cutlass_extensions/include/cutlass_extensions/interleaved_numeric_conversion.h#L125-L175 template __device__ inline typename ScalarType::FragB dequant_8bit(int q) { STATIC_ASSERT_SCALAR_TYPE_VALID(scalar_t); } template <> __device__ inline typename ScalarType::FragB dequant_8bit(int q) { // Constants for FP8 (E4M3) and FP16 formats constexpr int FP8_EXPONENT = 4, FP8_MANTISSA = 3, FP16_EXPONENT = 5; constexpr int RIGHT_SHIFT = FP16_EXPONENT - FP8_EXPONENT; // Calculate MASK for extracting mantissa and exponent constexpr int MASK1 = 0x80000000; constexpr int MASK2 = MASK1 >> (FP8_EXPONENT + FP8_MANTISSA); constexpr int MASK3 = MASK2 & 0x7fffffff; constexpr int MASK = MASK3 | (MASK3 >> 16); // Final MASK value: 0x7F007F00 // Extract and shift FP8 values to FP16 format int Out1 = (q & 0x80008000) | ((q & MASK) >> RIGHT_SHIFT); int Out2 = ((q << 8) & 0x80008000) | (((q << 8) & MASK) >> RIGHT_SHIFT); // Construct and apply exponent bias constexpr int BIAS_OFFSET = (1 << (FP16_EXPONENT - 1)) - (1 << (FP8_EXPONENT - 1)); const half2 bias_reg = __float2half2_rn(float(1 << BIAS_OFFSET)); // Convert to half2 and apply bias typename ScalarType::FragB frag_b; // Note: reverse indexing is intentional because weights are permuted frag_b[1] = __hmul2(*reinterpret_cast(&Out1), bias_reg); frag_b[0] = __hmul2(*reinterpret_cast(&Out2), bias_reg); return frag_b; } template <> __device__ inline typename ScalarType::FragB dequant_8bit(int q) { // Constants for FP8 (E4M3) and BF16 formats constexpr int FP8_EXPONENT = 4, FP8_MANTISSA = 3, BF16_EXPONENT = 8; constexpr int RIGHT_SHIFT = BF16_EXPONENT - FP8_EXPONENT; // Calculate MASK for extracting mantissa and exponent constexpr int MASK1 = 0x80000000; constexpr int MASK2 = MASK1 >> (FP8_EXPONENT + FP8_MANTISSA); constexpr int MASK3 = MASK2 & 0x7fffffff; constexpr int MASK = MASK3 | (MASK3 >> 16); // Final MASK value: 0x7F007F00 // Extract and shift FP8 values to BF16 format int Out1 = (q & 0x80008000) | ((q & MASK) >> RIGHT_SHIFT); int Out2 = ((q << 8) & 0x80008000) | (((q << 8) & MASK) >> RIGHT_SHIFT); // Construct and apply exponent bias constexpr int BIAS_OFFSET = (1 << (BF16_EXPONENT - 1)) - (1 << (FP8_EXPONENT - 1)); // Add 127 (float exponent bias) to BIAS_OFFSET and shift to float exponent // position constexpr uint32_t BIAS = (BIAS_OFFSET + 127) << 23; const nv_bfloat162 bias_reg = __float2bfloat162_rn(*reinterpret_cast(&BIAS)); // Convert to bfloat162 and apply bias typename ScalarType::FragB frag_b; // Note: reverse indexing is intentional because weights are permuted frag_b[1] = __hmul2(*reinterpret_cast(&Out1), bias_reg); frag_b[0] = __hmul2(*reinterpret_cast(&Out2), bias_reg); return frag_b; } // Multiply dequantized values by the corresponding quantization scale; used // only for grouped quantization. template __device__ inline void scale(typename ScalarType::FragB& frag_b, typename ScalarType::FragS& frag_s, int i) { using scalar_t2 = typename ScalarType::scalar_t2; scalar_t2 s = ScalarType::num2num2(reinterpret_cast(&frag_s)[i]); frag_b[0] = __hmul2(frag_b[0], s); frag_b[1] = __hmul2(frag_b[1], s); } // Given 2 floats multiply by 2 scales (halves) template __device__ inline void scale_float(float* c, typename ScalarType::FragS& s) { scalar_t* s_ptr = reinterpret_cast(&s); c[0] = __fmul_rn(c[0], ScalarType::num2float(s_ptr[0])); c[1] = __fmul_rn(c[1], ScalarType::num2float(s_ptr[1])); } // Wait until barrier reaches `count`, then lock for current threadblock. __device__ inline void barrier_acquire(int* lock, int count) { if (threadIdx.x == 0) { int state = -1; do // Guarantee that subsequent writes by this threadblock will be visible // globally. asm volatile("ld.global.acquire.gpu.b32 %0, [%1];\n" : "=r"(state) : "l"(lock)); while (state != count); } __syncthreads(); } // Release barrier and increment visitation count. __device__ inline void barrier_release(int* lock, bool reset = false) { __syncthreads(); if (threadIdx.x == 0) { if (reset) { lock[0] = 0; return; } int val = 1; // Make sure that all writes since acquiring this barrier are visible // globally, while releasing the barrier. asm volatile("fence.acq_rel.gpu;\n"); asm volatile("red.relaxed.gpu.global.add.s32 [%0], %1;\n" : : "l"(lock), "r"(val)); } } template shared // fetch pipeline const int group_blocks = -1 // number of consecutive 16x16 blocks // with a separate quantization scale > __global__ void Marlin( const int4* __restrict__ A, // fp16 input matrix of shape mxk const int4* __restrict__ B, // 4bit quantized weight matrix of shape kxn int4* __restrict__ C, // fp16 output buffer of shape mxn const int4* __restrict__ scales_ptr, // fp16 quantization scales of shape // (k/groupsize)xn int num_groups, // number of scale groups per output channel int prob_m, // batch dimension m int prob_n, // output dimension n int prob_k, // reduction dimension k int* locks // extra global storage for barrier synchronization ) { // Each threadblock processes one "stripe" of the B matrix with (roughly) the // same size, which might involve multiple column "slices" (of width 16 * // `thread_n_blocks`). Stripes are defined as shown in the 3x3 matrix 5 SM // example: // 0 1 3 // 0 2 3 // 1 2 4 // While this kind of partitioning makes things somewhat more complicated, it // ensures good utilization of all SMs for many kinds of shape and GPU // configurations, while requiring as few slow global cross-threadblock // reductions as possible. using Dtype = ScalarType; using scalar_t2 = typename ScalarType::scalar_t2; using FragA = typename ScalarType::FragA; using FragB = typename ScalarType::FragB; using FragC = typename ScalarType::FragC; using FragS = typename ScalarType::FragS; constexpr int pack_factor = 32 / num_bits; // For larger GEMMs we run multiple batchsize 64 versions in parallel for a // better partitioning with less reductions int parallel = 1; if (prob_m > 16 * thread_m_blocks) { parallel = prob_m / (16 * thread_m_blocks); prob_m = 16 * thread_m_blocks; } int k_tiles = prob_k / 16 / thread_k_blocks; int n_tiles = prob_n / 16 / thread_n_blocks; int iters = div_ceil(k_tiles * n_tiles * parallel, gridDim.x); int slice_row = (iters * blockIdx.x) % k_tiles; int slice_col_par = (iters * blockIdx.x) / k_tiles; int slice_col = slice_col_par; int slice_iters; // number of threadblock tiles in the current slice int slice_count = 0; // total number of active threadblocks in the current slice int slice_idx; // index of threadblock in current slice; numbered bottom to // top // We can easily implement parallel problem execution by just remapping // indices and advancing global pointers if (slice_col_par >= n_tiles) { A += (slice_col_par / n_tiles) * 16 * thread_m_blocks * prob_k / 8; C += (slice_col_par / n_tiles) * 16 * thread_m_blocks * prob_n / 8; locks += (slice_col_par / n_tiles) * n_tiles; slice_col = slice_col_par % n_tiles; } // Compute all information about the current slice which is required for // synchronization. auto init_slice = [&]() { slice_iters = iters * (blockIdx.x + 1) - (k_tiles * slice_col_par + slice_row); if (slice_iters < 0 || slice_col_par >= n_tiles * parallel) slice_iters = 0; if (slice_iters == 0) return; if (slice_row + slice_iters > k_tiles) slice_iters = k_tiles - slice_row; slice_count = 1; slice_idx = 0; int col_first = iters * div_ceil(k_tiles * slice_col_par, iters); if (col_first <= k_tiles * (slice_col_par + 1)) { int col_off = col_first - k_tiles * slice_col_par; slice_count = div_ceil(k_tiles - col_off, iters); if (col_off > 0) slice_count++; int delta_first = iters * blockIdx.x - col_first; if (delta_first < 0 || (col_off == 0 && delta_first == 0)) slice_idx = slice_count - 1; else { slice_idx = slice_count - 1 - delta_first / iters; if (col_off > 0) slice_idx--; } } if (slice_col == n_tiles) { A += 16 * thread_m_blocks * prob_k / 8; C += 16 * thread_m_blocks * prob_n / 8; locks += n_tiles; slice_col = 0; } }; init_slice(); // A sizes/strides // stride of the A matrix in global memory int a_gl_stride = prob_k / 8; // stride of an A matrix tile in shared memory constexpr int a_sh_stride = 16 * thread_k_blocks / 8; // delta between subsequent A tiles in global memory constexpr int a_gl_rd_delta_o = 16 * thread_k_blocks / 8; // between subsequent accesses within a tile int a_gl_rd_delta_i = a_gl_stride * (threads / a_gl_rd_delta_o); // between shared memory writes constexpr int a_sh_wr_delta = a_sh_stride * (threads / a_gl_rd_delta_o); // between shared memory tile reads constexpr int a_sh_rd_delta_o = 2 * ((threads / 32) / (thread_n_blocks / 4)); // within a shared memory tile constexpr int a_sh_rd_delta_i = a_sh_stride * 16; // overall size of a tile constexpr int a_sh_stage = a_sh_stride * (16 * thread_m_blocks); // number of shared write iterations for a tile constexpr int a_sh_wr_iters = div_ceil(a_sh_stage, a_sh_wr_delta); // B sizes/strides int b_gl_stride = 16 * prob_n / (pack_factor * 4); constexpr int b_sh_stride = ((thread_n_blocks * 16) * 16 / pack_factor) / 4; constexpr int b_thread_vecs = num_bits == 4 ? 1 : 2; constexpr int b_sh_stride_threads = b_sh_stride / b_thread_vecs; int b_gl_rd_delta_o = b_gl_stride * thread_k_blocks; int b_gl_rd_delta_i = b_gl_stride * (threads / b_sh_stride_threads); constexpr int b_sh_wr_delta = threads * b_thread_vecs; constexpr int b_sh_rd_delta = threads * b_thread_vecs; constexpr int b_sh_stage = b_sh_stride * thread_k_blocks; constexpr int b_sh_wr_iters = b_sh_stage / b_sh_wr_delta; // Scale sizes/strides without act_order int s_gl_stride = prob_n / 8; constexpr int s_sh_stride = 16 * thread_n_blocks / 8; // Scale size/strides with act_order constexpr int tb_k = 16 * thread_k_blocks; constexpr int g_idx_stage = 0; // constexpr int act_s_row_stride = 1; // int act_s_col_stride = act_s_row_stride * num_groups; int act_s_col_stride = 1; int act_s_col_warp_stride = act_s_col_stride * 8; int tb_n_warps = thread_n_blocks / 4; int act_s_col_tb_stride = act_s_col_warp_stride * tb_n_warps; // Global A read index of current thread. int a_gl_rd = a_gl_stride * (threadIdx.x / a_gl_rd_delta_o) + (threadIdx.x % a_gl_rd_delta_o); a_gl_rd += a_gl_rd_delta_o * slice_row; // Shared write index of current thread. int a_sh_wr = a_sh_stride * (threadIdx.x / a_gl_rd_delta_o) + (threadIdx.x % a_gl_rd_delta_o); // Shared read index. int a_sh_rd = a_sh_stride * ((threadIdx.x % 32) % 16) + (threadIdx.x % 32) / 16; a_sh_rd += 2 * ((threadIdx.x / 32) / (thread_n_blocks / 4)); int b_gl_rd = b_gl_stride * (threadIdx.x / b_sh_stride_threads) + (threadIdx.x % b_sh_stride_threads) * b_thread_vecs; b_gl_rd += b_sh_stride * slice_col; b_gl_rd += b_gl_rd_delta_o * slice_row; int b_sh_wr = threadIdx.x * b_thread_vecs; int b_sh_rd = threadIdx.x * b_thread_vecs; // For act_order int slice_k_start = tb_k * slice_row; int slice_k_start_shared_fetch = slice_k_start; int slice_n_offset = act_s_col_tb_stride * slice_col; // No act_order int s_gl_rd = s_sh_stride * slice_col + threadIdx.x; int s_sh_wr = threadIdx.x; bool s_sh_wr_pred = threadIdx.x < s_sh_stride; // We scale a `half2` tile in row-major layout for column-wise quantization. int s_sh_rd = 8 * ((threadIdx.x / 32) % (thread_n_blocks / 4)) + (threadIdx.x % 32) % 4; // Precompute which thread should not read memory in which iterations; this is // needed if there are more threads than required for a certain tilesize or // when the batchsize is not a multiple of 16. bool a_sh_wr_pred[a_sh_wr_iters]; #pragma unroll for (int i = 0; i < a_sh_wr_iters; i++) a_sh_wr_pred[i] = a_sh_wr_delta * i + a_sh_wr < a_sh_stride * prob_m; // To ensure that writing and reading A tiles to/from shared memory, the // latter in fragment format, is fully bank conflict free, we need to use a // rather fancy XOR-based layout. The key here is that neither reads nor // writes of the 16-byte `int4` blocks of 8 consecutive threads involve the // same shared memory banks. Further, it seems (based on NSight-Compute) that // each warp must also write a consecutive memory segment? auto transform_a = [&](int i) { int row = i / a_gl_rd_delta_o; return a_gl_rd_delta_o * row + (i % a_gl_rd_delta_o) ^ row; }; // Since the computation of this remapping is non-trivial and, due to our main // loop unrolls, all shared memory accesses are static, we simply precompute // both transformed reads and writes. int a_sh_wr_trans[a_sh_wr_iters]; #pragma unroll for (int i = 0; i < a_sh_wr_iters; i++) a_sh_wr_trans[i] = transform_a(a_sh_wr_delta * i + a_sh_wr); int a_sh_rd_trans[b_sh_wr_iters][thread_m_blocks]; #pragma unroll for (int i = 0; i < b_sh_wr_iters; i++) { #pragma unroll for (int j = 0; j < thread_m_blocks; j++) a_sh_rd_trans[i][j] = transform_a(a_sh_rd_delta_o * i + a_sh_rd_delta_i * j + a_sh_rd); } // Since B-accesses have non-constant stride they have to be computed at // runtime; we break dependencies between subsequent accesses with a tile by // maintining multiple pointers (we have enough registers), a tiny // optimization. const int4* B_ptr[b_sh_wr_iters]; #pragma unroll for (int i = 0; i < b_sh_wr_iters; i++) B_ptr[i] = B + b_gl_rd_delta_i * i + b_gl_rd; extern __shared__ int4 sh[]; // Shared memory storage for global fetch pipelines. int4* sh_a = sh; int4* sh_b = sh_a + (stages * a_sh_stage); int4* sh_g_idx = sh_b + (stages * b_sh_stage); int4* sh_s = sh_g_idx + (stages * g_idx_stage); // Register storage for double buffer of shared memory reads. FragA frag_a[2][thread_m_blocks]; I4 frag_b_quant[2][b_thread_vecs]; FragC frag_c[thread_m_blocks][4][2]; FragS frag_s[2][4]; // Zero accumulators. auto zero_accums = [&]() { #pragma unroll for (int i = 0; i < thread_m_blocks * 4 * 2 * 4; i++) reinterpret_cast(frag_c)[i] = 0; }; int sh_first_group_id = -1; int sh_num_groups = -1; constexpr int sh_max_num_groups = 32; auto fetch_scales_to_shared = [&](bool is_async, int first_group_id, int last_group_id) { sh_first_group_id = first_group_id; sh_num_groups = last_group_id - first_group_id + 1; if (sh_num_groups < sh_max_num_groups) { sh_num_groups = sh_max_num_groups; } if (sh_first_group_id + sh_num_groups > num_groups) { sh_num_groups = num_groups - sh_first_group_id; } int row_offset = first_group_id * s_gl_stride; if (is_async) { for (int i = 0; i < sh_num_groups; i++) { if (threadIdx.x < s_sh_stride) { cp_async4_pred(&sh_s[(i * s_sh_stride) + threadIdx.x], &scales_ptr[row_offset + (i * s_gl_stride) + slice_n_offset + threadIdx.x]); } } } else { for (int i = 0; i < sh_num_groups; i++) { if (threadIdx.x < s_sh_stride) { sh_s[(i * s_sh_stride) + threadIdx.x] = scales_ptr[row_offset + (i * s_gl_stride) + slice_n_offset + threadIdx.x]; } } } }; // Asynchronously fetch the next A, B and s tile from global to the next // shared memory pipeline location. auto fetch_to_shared = [&](int pipe, int a_off, bool pred = true) { if (pred) { int4* sh_a_stage = sh_a + a_sh_stage * pipe; #pragma unroll for (int i = 0; i < a_sh_wr_iters; i++) { cp_async4_pred( &sh_a_stage[a_sh_wr_trans[i]], &A[a_gl_rd_delta_i * i + a_gl_rd + a_gl_rd_delta_o * a_off], a_sh_wr_pred[i]); } int4* sh_b_stage = sh_b + b_sh_stage * pipe; #pragma unroll for (int i = 0; i < b_sh_wr_iters; i++) { #pragma unroll for (int j = 0; j < b_thread_vecs; j++) { cp_async4(&sh_b_stage[b_sh_wr_delta * i + b_sh_wr + j], B_ptr[i] + j); } B_ptr[i] += b_gl_rd_delta_o; } } // Insert a fence even when we are winding down the pipeline to ensure that // waiting is also correct at this point. cp_async_fence(); }; // Wait until the next thread tile has been loaded to shared memory. auto wait_for_stage = [&]() { // We only have `stages - 2` active fetches since we are double buffering // and can only issue the next fetch when it is guaranteed that the previous // shared memory load is fully complete (as it may otherwise be // overwritten). cp_async_wait(); __syncthreads(); }; // Load the next sub-tile from the current location in the shared memory pipe // into the current register buffer. auto fetch_to_registers = [&](int k, int pipe) { int4* sh_a_stage = sh_a + a_sh_stage * pipe; #pragma unroll for (int i = 0; i < thread_m_blocks; i++) ldsm4(frag_a[k % 2][i], &sh_a_stage[a_sh_rd_trans[k % b_sh_wr_iters][i]]); int4* sh_b_stage = sh_b + b_sh_stage * pipe; #pragma unroll for (int i = 0; i < b_thread_vecs; i++) { frag_b_quant[k % 2][i] = *reinterpret_cast( &sh_b_stage[b_sh_rd_delta * (k % b_sh_wr_iters) + b_sh_rd + i]); } }; bool is_same_group[stages]; int same_group_id[stages]; auto init_same_group = [&](int pipe) { is_same_group[pipe] = false; same_group_id[pipe] = 0; return; }; // Execute the actual tensor core matmul of a sub-tile. auto matmul = [&](int k) { // We have the m dimension as the inner loop in order to encourage overlapping // dequantization and matmul operations. #pragma unroll for (int j = 0; j < 4; j++) { FragB frag_b0; FragB frag_b1; int* frag_b_quant_ptr = reinterpret_cast(frag_b_quant[k % 2]); int b_quant_0 = frag_b_quant_ptr[j * 2 + 0]; int b_quant_1 = frag_b_quant_ptr[j * 2 + 1]; frag_b0 = dequant_8bit(b_quant_0); frag_b1 = dequant_8bit(b_quant_1); #pragma unroll for (int i = 0; i < thread_m_blocks; i++) { mma(frag_a[k % 2][i], frag_b0, frag_c[i][j][0]); mma(frag_a[k % 2][i], frag_b1, frag_c[i][j][1]); } } }; // Since we slice across the k dimension of a tile in order to increase the // number of warps while keeping the n dimension of a tile reasonable, we have // multiple warps that accumulate their partial sums of the same output // location; which we have to reduce over in the end. We do in shared memory. auto thread_block_reduce = [&]() { constexpr int red_off = threads / b_sh_stride_threads / 2; if (red_off >= 1) { int red_idx = threadIdx.x / b_sh_stride_threads; constexpr int red_sh_stride = b_sh_stride_threads * 4 * 2; constexpr int red_sh_delta = b_sh_stride_threads; int red_sh_rd = red_sh_stride * (threadIdx.x / b_sh_stride_threads) + (threadIdx.x % b_sh_stride_threads); // Parallel logarithmic shared memory reduction. We make sure to avoid any // unnecessary read or write iterations, e.g., for two warps we write only // once by warp 1 and read only once by warp 0. #pragma unroll for (int m_block = 0; m_block < thread_m_blocks; m_block++) { #pragma unroll for (int i = red_off; i > 0; i /= 2) { if (i <= red_idx && red_idx < 2 * i) { #pragma unroll for (int j = 0; j < 4 * 2; j++) { int red_sh_wr = red_sh_delta * j + (red_sh_rd - red_sh_stride * i); if (i < red_off) { float* c_rd = reinterpret_cast(&sh[red_sh_delta * j + red_sh_rd]); float* c_wr = reinterpret_cast(&sh[red_sh_wr]); #pragma unroll for (int k = 0; k < 4; k++) reinterpret_cast(frag_c)[4 * 2 * m_block + j][k] += c_rd[k] + c_wr[k]; } sh[red_sh_wr] = reinterpret_cast(&frag_c)[4 * 2 * m_block + j]; } } __syncthreads(); } if (red_idx == 0) { #pragma unroll for (int i = 0; i < 4 * 2; i++) { float* c_rd = reinterpret_cast(&sh[red_sh_delta * i + red_sh_rd]); #pragma unroll for (int j = 0; j < 4; j++) reinterpret_cast(frag_c)[4 * 2 * m_block + i][j] += c_rd[j]; } } __syncthreads(); } } }; // Since multiple threadblocks may process parts of the same column slice, we // finally have to globally reduce over the results. As the striped // partitioning minimizes the number of such reductions and our outputs are // usually rather small, we perform this reduction serially in L2 cache. auto global_reduce = [&](bool first = false, bool last = false) { // We are very careful here to reduce directly in the output buffer to // maximize L2 cache utilization in this step. To do this, we write out // results in FP16 (but still reduce with FP32 compute). constexpr int active_threads = 32 * thread_n_blocks / 4; if (threadIdx.x < active_threads) { int c_gl_stride = prob_n / 8; int c_gl_wr_delta_o = 8 * c_gl_stride; int c_gl_wr_delta_i = 4 * (active_threads / 32); int c_gl_wr = c_gl_stride * ((threadIdx.x % 32) / 4) + 4 * (threadIdx.x / 32) + threadIdx.x % 4; c_gl_wr += (2 * thread_n_blocks) * slice_col; constexpr int c_sh_wr_delta = active_threads; int c_sh_wr = threadIdx.x; int row = (threadIdx.x % 32) / 4; if (!first) { // Interestingly, doing direct global accesses here really seems to mess up // the compiler and lead to slowdowns, hence we also use async-copies even // though these fetches are not actually asynchronous. #pragma unroll for (int i = 0; i < thread_m_blocks * 4; i++) { cp_async4_pred( &sh[c_sh_wr + c_sh_wr_delta * i], &C[c_gl_wr + c_gl_wr_delta_o * (i / 2) + c_gl_wr_delta_i * (i % 2)], i < (thread_m_blocks - 1) * 4 || 8 * (i / 2) + row < prob_m); } cp_async_fence(); cp_async_wait<0>(); } #pragma unroll for (int i = 0; i < thread_m_blocks * 4; i++) { if (i < (thread_m_blocks - 1) * 4 || 8 * (i / 2) + row < prob_m) { if (!first) { int4 c_red = sh[c_sh_wr + i * c_sh_wr_delta]; #pragma unroll for (int j = 0; j < 2 * 4; j++) { reinterpret_cast( &frag_c)[4 * 2 * 4 * (i / 4) + 4 * j + (i % 4)] += Dtype::num2float(reinterpret_cast(&c_red)[j]); } } if (!last) { int4 c; #pragma unroll for (int j = 0; j < 2 * 4; j++) { reinterpret_cast(&c)[j] = Dtype::float2num(reinterpret_cast( &frag_c)[4 * 2 * 4 * (i / 4) + 4 * j + (i % 4)]); } C[c_gl_wr + c_gl_wr_delta_o * (i / 2) + c_gl_wr_delta_i * (i % 2)] = c; } } } } }; // Write out the reduce final result in the correct layout. We only actually // reshuffle matrix fragments in this step, the reduction above is performed // in fragment layout. auto write_result = [&]() { int c_gl_stride = prob_n / 8; constexpr int c_sh_stride = 2 * thread_n_blocks + 1; int c_gl_wr_delta = c_gl_stride * (threads / (2 * thread_n_blocks)); constexpr int c_sh_rd_delta = c_sh_stride * (threads / (2 * thread_n_blocks)); int c_gl_wr = c_gl_stride * (threadIdx.x / (2 * thread_n_blocks)) + (threadIdx.x % (2 * thread_n_blocks)); c_gl_wr += (2 * thread_n_blocks) * slice_col; int c_sh_wr = (4 * c_sh_stride) * ((threadIdx.x % 32) / 4) + (threadIdx.x % 32) % 4; c_sh_wr += 32 * (threadIdx.x / 32); int c_sh_rd = c_sh_stride * (threadIdx.x / (2 * thread_n_blocks)) + (threadIdx.x % (2 * thread_n_blocks)); int c_gl_wr_end = c_gl_stride * prob_m; // We first reorder in shared memory to guarantee the most efficient final // global write patterns auto write = [&](int idx, float c0, float c1, FragS& s) { scalar_t2 res = Dtype::nums2num2(Dtype::float2num(c0), Dtype::float2num(c1)); ((scalar_t2*)sh)[idx] = res; }; if (threadIdx.x / 32 < thread_n_blocks / 4) { #pragma unroll for (int i = 0; i < thread_m_blocks; i++) { #pragma unroll for (int j = 0; j < 4; j++) { int wr = c_sh_wr + 8 * j; write(wr + (4 * c_sh_stride) * 0 + 0, frag_c[i][j][0][0], frag_c[i][j][0][1], frag_s[j / 2][2 * (j % 2) + 0]); write(wr + (4 * c_sh_stride) * 8 + 0, frag_c[i][j][0][2], frag_c[i][j][0][3], frag_s[j / 2][2 * (j % 2) + 0]); write(wr + (4 * c_sh_stride) * 0 + 4, frag_c[i][j][1][0], frag_c[i][j][1][1], frag_s[j / 2][2 * (j % 2) + 1]); write(wr + (4 * c_sh_stride) * 8 + 4, frag_c[i][j][1][2], frag_c[i][j][1][3], frag_s[j / 2][2 * (j % 2) + 1]); } c_sh_wr += 16 * (4 * c_sh_stride); } } __syncthreads(); #pragma unroll for (int i = 0; i < div_ceil(16 * thread_m_blocks, threads / (2 * thread_n_blocks)); i++) { if (c_gl_wr < c_gl_wr_end) { C[c_gl_wr] = sh[c_sh_rd]; c_gl_wr += c_gl_wr_delta; c_sh_rd += c_sh_rd_delta; } } }; // Start global fetch and register load pipelines. auto start_pipes = [&]() { #pragma unroll for (int i = 0; i < stages - 1; i++) { fetch_to_shared(i, i, i < slice_iters); } zero_accums(); wait_for_stage(); init_same_group(0); fetch_to_registers(0, 0); a_gl_rd += a_gl_rd_delta_o * (stages - 1); slice_k_start_shared_fetch += tb_k * (stages - 1); }; if (slice_iters) { start_pipes(); } // Main loop. while (slice_iters) { // We unroll over both the global fetch and the register load pipeline to // ensure all shared memory accesses are static. Note that both pipelines // have even length meaning that the next iteration will always start at // index 0. #pragma unroll for (int pipe = 0; pipe < stages;) { #pragma unroll for (int k = 0; k < b_sh_wr_iters; k++) { fetch_to_registers(k + 1, pipe % stages); if (k == b_sh_wr_iters - 2) { fetch_to_shared((pipe + stages - 1) % stages, pipe, slice_iters >= stages); pipe++; wait_for_stage(); init_same_group(pipe % stages); } matmul(k); } slice_iters--; if (slice_iters == 0) { break; } } a_gl_rd += a_gl_rd_delta_o * stages; slice_k_start += tb_k * stages; slice_k_start_shared_fetch += tb_k * stages; // Process results and, if necessary, proceed to the next column slice. // While this pattern may not be the most readable, other ways of writing // the loop seemed to noticeably worse performance after compilation. if (slice_iters == 0) { cp_async_wait<0>(); bool last = slice_idx == slice_count - 1; // For per-column scales, we only fetch them here in the final step before // write-out if (s_sh_wr_pred) { cp_async4(&sh_s[s_sh_wr], &scales_ptr[s_gl_rd]); } cp_async_fence(); thread_block_reduce(); cp_async_wait<0>(); __syncthreads(); if (threadIdx.x / 32 < thread_n_blocks / 4) { reinterpret_cast(&frag_s)[0] = sh_s[s_sh_rd + 0]; reinterpret_cast(&frag_s)[1] = sh_s[s_sh_rd + 4]; } // For 8-bit channelwise, we apply the scale before the global reduction // that converts the fp32 results to fp16 (so that we avoid possible // overflow in fp16) if (threadIdx.x / 32 < thread_n_blocks / 4) { #pragma unroll for (int i = 0; i < thread_m_blocks; i++) { #pragma unroll for (int j = 0; j < 4; j++) { scale_float(reinterpret_cast(&frag_c[i][j][0][0]), frag_s[j / 2][2 * (j % 2) + 0]); scale_float(reinterpret_cast(&frag_c[i][j][0][2]), frag_s[j / 2][2 * (j % 2) + 0]); scale_float(reinterpret_cast(&frag_c[i][j][1][0]), frag_s[j / 2][2 * (j % 2) + 1]); scale_float(reinterpret_cast(&frag_c[i][j][1][2]), frag_s[j / 2][2 * (j % 2) + 1]); } } } if (slice_count > 1) { // only globally reduce if there is more than one // block in a slice barrier_acquire(&locks[slice_col], slice_idx); global_reduce(slice_idx == 0, last); barrier_release(&locks[slice_col], last); } if (last) // only the last block in a slice actually writes the result write_result(); slice_row = 0; slice_col_par++; slice_col++; init_slice(); if (slice_iters) { a_gl_rd = a_gl_stride * (threadIdx.x / a_gl_rd_delta_o) + (threadIdx.x % a_gl_rd_delta_o); #pragma unroll for (int i = 0; i < b_sh_wr_iters; i++) B_ptr[i] += b_sh_stride - b_gl_rd_delta_o * k_tiles; if (slice_col == 0) { #pragma unroll for (int i = 0; i < b_sh_wr_iters; i++) B_ptr[i] -= b_gl_stride; } // Update slice k/n for scales loading s_gl_rd = s_sh_stride * slice_col + threadIdx.x; start_pipes(); } } } } #define __CALL_IF(NUM_BITS, THREAD_M_BLOCKS, THREAD_N_BLOCKS, \ THREAD_K_BLOCKS, GROUP_BLOCKS, NUM_THREADS) \ else if (num_bits == NUM_BITS && thread_m_blocks == THREAD_M_BLOCKS && \ thread_n_blocks == THREAD_N_BLOCKS && \ thread_k_blocks == THREAD_K_BLOCKS && \ group_blocks == GROUP_BLOCKS && num_threads == NUM_THREADS) { \ cudaFuncSetAttribute( \ Marlin, \ cudaFuncAttributeMaxDynamicSharedMemorySize, max_shared_mem); \ Marlin \ <<>>( \ A_ptr, B_ptr, C_ptr, s_ptr, num_groups, prob_m, prob_n, prob_k, \ locks); \ } typedef struct { int thread_k; int thread_n; int num_threads; } thread_config_t; typedef struct { int max_m_blocks; thread_config_t tb_cfg; } exec_config_t; thread_config_t small_batch_thread_configs[] = { // Ordered by priority // thread_k, thread_n, num_threads {128, 128, 256}, {64, 128, 128}, {128, 64, 128}, }; thread_config_t large_batch_thread_configs[] = { // Ordered by priority // thread_k, thread_n, num_threads {64, 256, 256}, {64, 128, 128}, {128, 64, 128}, }; int get_scales_cache_size(thread_config_t const& th_config, int prob_m, int prob_n, int prob_k, int num_bits, int group_size) { int tb_n = th_config.thread_n; // Get max scale groups per thread-block // Fixed for channelwise int tb_groups = 1; int tb_scales = tb_groups * tb_n * 2; return tb_scales * pipe_stages; } bool is_valid_cache_size(thread_config_t const& th_config, int max_m_blocks, int prob_m, int prob_n, int prob_k, int num_bits, int scales_cache_size, int max_shared_mem) { int pack_factor = 32 / num_bits; // Get B size int tb_k = th_config.thread_k; int tb_n = th_config.thread_n; int b_size = (tb_k * tb_n / pack_factor) * 4; // Get A size int m_blocks = div_ceil(prob_m, 16); int tb_max_m = 16; while (true) { if (m_blocks >= max_m_blocks) { tb_max_m *= max_m_blocks; break; } max_m_blocks--; if (max_m_blocks == 0) { TORCH_CHECK(false, "Unexpected m_blocks = ", m_blocks); } } int a_size = (tb_max_m * tb_k) * 2; float pipe_size = (a_size + b_size) * pipe_stages; TORCH_CHECK(max_shared_mem / 2 > scales_cache_size); // Sanity return pipe_size < 0.95f * (max_shared_mem - scales_cache_size); } bool is_valid_config(thread_config_t const& th_config, int max_m_blocks, int prob_m, int prob_n, int prob_k, int num_bits, int group_size, int max_shared_mem) { // Sanity if (th_config.thread_k == -1 || th_config.thread_n == -1 || th_config.num_threads == -1) { return false; } // Verify K/N are divisible by thread K/N if (prob_k % th_config.thread_k != 0 || prob_n % th_config.thread_n != 0) { return false; } // Verify min for thread K/N if (th_config.thread_n < min_thread_n || th_config.thread_k < min_thread_k) { return false; } // num_threads must be at least 128 (= 4 warps) if (th_config.num_threads < 128) { return false; } // Determine cache for scales int scales_cache_size = get_scales_cache_size(th_config, prob_m, prob_n, prob_k, num_bits, group_size); // Check that pipeline fits into cache if (!is_valid_cache_size(th_config, max_m_blocks, prob_m, prob_n, prob_k, num_bits, scales_cache_size, max_shared_mem)) { return false; } return true; } exec_config_t determine_thread_config(int prob_m, int prob_n, int prob_k, int num_bits, int group_size, int max_shared_mem) { int max_m_blocks = 4; while (max_m_blocks > 0) { if (prob_m <= 16) { for (auto th_config : small_batch_thread_configs) { if (is_valid_config(th_config, max_m_blocks, prob_m, prob_n, prob_k, num_bits, group_size, max_shared_mem)) { return exec_config_t{max_m_blocks, th_config}; } } } else { for (auto th_config : large_batch_thread_configs) { if (is_valid_config(th_config, max_m_blocks, prob_m, prob_n, prob_k, num_bits, group_size, max_shared_mem)) { return exec_config_t{max_m_blocks, th_config}; } } } max_m_blocks--; // Process less M blocks per invocation to reduce cache // usage } return exec_config_t{0, {-1, -1, -1}}; } #define CALL_IF(NUM_BITS, N_BLOCKS, K_BLOCKS, NUM_THREADS) \ __CALL_IF(NUM_BITS, 1, N_BLOCKS, K_BLOCKS, -1, NUM_THREADS) \ __CALL_IF(NUM_BITS, 2, N_BLOCKS, K_BLOCKS, -1, NUM_THREADS) \ __CALL_IF(NUM_BITS, 3, N_BLOCKS, K_BLOCKS, -1, NUM_THREADS) \ __CALL_IF(NUM_BITS, 4, N_BLOCKS, K_BLOCKS, -1, NUM_THREADS) template void marlin_mm_f16i4(const void* A, const void* B, void* C, void* s, int prob_m, int prob_n, int prob_k, void* workspace, int num_bits, int num_groups, int group_size, int dev, cudaStream_t stream, int thread_k, int thread_n, int sms, int max_par) { TORCH_CHECK(num_bits == 8, "num_bits must be 8. Got = ", num_bits); TORCH_CHECK(prob_m > 0 && prob_n > 0 && prob_k > 0, "Invalid MNK = [", prob_m, ", ", prob_n, ", ", prob_k, "]"); int tot_m = prob_m; int tot_m_blocks = div_ceil(tot_m, 16); int pad = 16 * tot_m_blocks - tot_m; if (sms == -1) { cudaDeviceGetAttribute(&sms, cudaDevAttrMultiProcessorCount, dev); } int max_shared_mem = 0; cudaDeviceGetAttribute(&max_shared_mem, cudaDevAttrMaxSharedMemoryPerBlockOptin, dev); TORCH_CHECK(max_shared_mem > 0); // Set thread config exec_config_t exec_cfg; if (thread_k != -1 && thread_n != -1) { // User-defined config exec_cfg = exec_config_t{4, thread_config_t{thread_k, thread_n, default_threads}}; } else { // Auto config exec_cfg = determine_thread_config(prob_m, prob_n, prob_k, num_bits, group_size, max_shared_mem); } TORCH_CHECK( exec_cfg.max_m_blocks > 0 && is_valid_config(exec_cfg.tb_cfg, exec_cfg.max_m_blocks, prob_m, prob_n, prob_k, num_bits, group_size, max_shared_mem), "Invalid thread config: max_m_blocks = ", exec_cfg.max_m_blocks, ", thread_k = ", exec_cfg.tb_cfg.thread_k, ", thread_n = ", exec_cfg.tb_cfg.thread_n, ", num_threads = ", exec_cfg.tb_cfg.num_threads, " for MKN = [", prob_m, ", ", prob_k, ", ", prob_n, "] and num_bits = ", num_bits, ", group_size = ", group_size, ", max_shared_mem = ", max_shared_mem); int num_threads = exec_cfg.tb_cfg.num_threads; thread_k = exec_cfg.tb_cfg.thread_k; thread_n = exec_cfg.tb_cfg.thread_n; int thread_k_blocks = thread_k / 16; int thread_n_blocks = thread_n / 16; int blocks = sms; TORCH_CHECK(prob_n % thread_n == 0, "prob_n = ", prob_n, " is not divisible by thread_n = ", thread_n); TORCH_CHECK(prob_k % thread_k == 0, "prob_k = ", prob_k, " is not divisible by thread_k = ", thread_k); int group_blocks = -1; const int4* A_ptr = (const int4*)A; const int4* B_ptr = (const int4*)B; int4* C_ptr = (int4*)C; const int4* s_ptr = (const int4*)s; int* locks = (int*)workspace; // Main loop for (int i = 0; i < tot_m_blocks; i += exec_cfg.max_m_blocks) { int thread_m_blocks = tot_m_blocks - i; prob_m = tot_m - 16 * i; int par = 1; if (thread_m_blocks > exec_cfg.max_m_blocks) { // Note that parallel > 1 currently only works for inputs without any // padding par = (16 * thread_m_blocks - pad) / (16 * exec_cfg.max_m_blocks); if (par > max_par) par = max_par; prob_m = (16 * exec_cfg.max_m_blocks) * par; i += exec_cfg.max_m_blocks * (par - 1); thread_m_blocks = exec_cfg.max_m_blocks; } // Define kernel configurations if (false) { } CALL_IF(8, 32, 2, 256) CALL_IF(8, 16, 4, 256) CALL_IF(8, 8, 8, 256) CALL_IF(8, 8, 4, 128) CALL_IF(8, 4, 8, 128) else { TORCH_CHECK(false, "Unsupported shapes: MNK = [" + str(prob_m) + ", " + str(prob_n) + ", " + str(prob_k) + "]" + ", num_groups = " + str(num_groups) + ", group_size = " + str(group_size) + ", thread_m_blocks = " + str(thread_m_blocks) + ", thread_n_blocks = " + str(thread_n_blocks) + ", thread_k_blocks = " + str(thread_k_blocks)); } A_ptr += 16 * thread_m_blocks * (prob_k / 8) * par; C_ptr += 16 * thread_m_blocks * (prob_n / 8) * par; } } } // namespace fp8_marlin torch::Tensor fp8_marlin_gemm(torch::Tensor& a, torch::Tensor& b_q_weight, torch::Tensor& b_scales, torch::Tensor& workspace, int64_t num_bits, int64_t size_m, int64_t size_n, int64_t size_k) { // Verify num_bits TORCH_CHECK(num_bits == 8, "num_bits must be 8. Got = ", num_bits); int pack_factor = 32 / num_bits; // Verify A TORCH_CHECK(a.size(0) == size_m, "Shape mismatch: a.size(0) = ", a.size(0), ", size_m = ", size_m); TORCH_CHECK(a.size(1) == size_k, "Shape mismatch: a.size(1) = ", a.size(1), ", size_k = ", size_k); // Verify B TORCH_CHECK(size_k % gptq_marlin::tile_size == 0, "size_k = ", size_k, " is not divisible by tile_size = ", gptq_marlin::tile_size); TORCH_CHECK((size_k / gptq_marlin::tile_size) == b_q_weight.size(0), "Shape mismatch: b_q_weight.size(0) = ", b_q_weight.size(0), ", size_k = ", size_k, ", tile_size = ", gptq_marlin::tile_size); TORCH_CHECK(b_q_weight.size(1) % gptq_marlin::tile_size == 0, "b_q_weight.size(1) = ", b_q_weight.size(1), " is not divisible by tile_size = ", gptq_marlin::tile_size); int actual_size_n = (b_q_weight.size(1) / gptq_marlin::tile_size) * pack_factor; TORCH_CHECK(size_n == actual_size_n, "size_n = ", size_n, ", actual_size_n = ", actual_size_n); // Verify device and strides TORCH_CHECK(a.device().is_cuda(), "A is not on GPU"); TORCH_CHECK(a.is_contiguous(), "A is not contiguous"); TORCH_CHECK(b_q_weight.device().is_cuda(), "b_q_weight is not on GPU"); TORCH_CHECK(b_q_weight.is_contiguous(), "b_q_weight is not contiguous"); TORCH_CHECK(b_scales.device().is_cuda(), "b_scales is not on GPU"); TORCH_CHECK(b_scales.is_contiguous(), "b_scales is not contiguous"); // Alloc buffers const at::cuda::OptionalCUDAGuard device_guard(device_of(a)); auto options = torch::TensorOptions().dtype(a.dtype()).device(a.device()); torch::Tensor c = torch::empty({size_m, size_n}, options); // thread_k: `k` size of a thread_tile in `weights` (can usually be left as // auto -1) int thread_k = -1; // thread_n: `n` size of a thread_tile in `weights` (can usually be left as // auto -1) int thread_n = -1; // sms: number of SMs to use for the kernel (can usually be left as auto -1) int sms = -1; // Detect groupsize and act_order int num_groups = -1; int group_size = -1; int b_rank = b_scales.sizes().size(); TORCH_CHECK(b_rank == 2, "b_scales rank = ", b_rank, " is not 2"); TORCH_CHECK(b_scales.size(1) == size_n, "b_scales dim 1 = ", b_scales.size(1), " is not size_n = ", size_n); // Channelwise only for FP8 TORCH_CHECK(b_scales.size(0) == 1) num_groups = b_scales.size(0); // Verify workspace size TORCH_CHECK( size_n % gptq_marlin::min_thread_n == 0, "size_n = ", size_n, ", is not divisible by min_thread_n = ", gptq_marlin::min_thread_n); int min_workspace_size = (size_n / gptq_marlin::min_thread_n) * gptq_marlin::max_par; TORCH_CHECK(workspace.numel() >= min_workspace_size, "workspace.numel = ", workspace.numel(), " is below min_workspace_size = ", min_workspace_size); int dev = a.get_device(); if (a.scalar_type() == at::ScalarType::Half) { fp8_marlin::marlin_mm_f16i4( a.data_ptr(), b_q_weight.data_ptr(), c.data_ptr(), b_scales.data_ptr(), size_m, size_n, size_k, workspace.data_ptr(), num_bits, num_groups, group_size, dev, at::cuda::getCurrentCUDAStream(dev), thread_k, thread_n, sms, gptq_marlin::max_par); } else if (a.scalar_type() == at::ScalarType::BFloat16) { fp8_marlin::marlin_mm_f16i4( a.data_ptr(), b_q_weight.data_ptr(), c.data_ptr(), b_scales.data_ptr(), size_m, size_n, size_k, workspace.data_ptr(), num_bits, num_groups, group_size, dev, at::cuda::getCurrentCUDAStream(dev), thread_k, thread_n, sms, gptq_marlin::max_par); } else { TORCH_CHECK(false, "fp8_marlin_gemm only supports bfloat16 and float16"); } return c; } #endif