import torch from typing import Optional, Tuple, Dict, List from text_generation_server.models import FlashCausalLM ADAPTER_LAYERS = [ "q_proj", "k_proj", "v_proj", "o_proj", "gate_proj", "up_proj", "down_proj", ] ROW_PARALLEL = {"o_proj", "down_proj", "lm_head"} class FlashMistral(FlashCausalLM): @property def supports_adapter_loading(self) -> bool: return True def adapter_target_to_layer(self) -> Dict[str, Tuple[str, torch.Tensor]]: layer_weights = {} prefix = "model.layers" # This accounts for VLMs (e.g. LlavaNext, Idefics2) # that have a language_model inside of the larger model. if hasattr(self.model, "text_model"): _model = self.model.text_model else: _model = self.model for i, layer in enumerate(_model.model.layers): layer_weights[(i, "q_proj")] = ( f"{prefix}.{i}.self_attn.q_proj", layer.self_attn.query_key_value, ) layer_weights[(i, "k_proj")] = ( f"{prefix}.{i}.self_attn.k_proj", layer.self_attn.query_key_value, ) layer_weights[(i, "v_proj")] = ( f"{prefix}.{i}.self_attn.v_proj", layer.self_attn.query_key_value, ) layer_weights[(i, "o_proj")] = ( f"{prefix}.{i}.self_attn.o_proj", layer.self_attn.o_proj, ) # TODO: this is a hack to avoid the gate_proj for # FlashStarcoder2 that doesnt have these layers if hasattr(layer, "mlp") and hasattr(layer.mlp, "gate_up_proj"): layer_weights[(i, "gate_proj")] = ( f"{prefix}.{i}.mlp.gate_proj", layer.mlp.gate_up_proj, ) layer_weights[(i, "up_proj")] = ( f"{prefix}.{i}.mlp.up_proj", layer.mlp.gate_up_proj, ) layer_weights[(i, "down_proj")] = ( f"{prefix}.{i}.mlp.down_proj", layer.mlp.down_proj, ) layer_weights[(0, "lm_head")] = ("lm_head", _model.lm_head) return layer_weights @property def adapter_layers(self) -> List[str]: return ADAPTER_LAYERS @property def default_traced_adapter_layers(self) -> List[str]: return ["q_proj", "v_proj"] def get_num_layers_for_type(self, layer_type: str) -> int: return 1 if layer_type == "lm_head" else len(self.model.model.layers) def is_row_parallel(self, layer_type: str) -> bool: return layer_type in ROW_PARALLEL