import torch import torch.distributed from opentelemetry import trace from transformers import AutoTokenizer, AutoConfig from typing import Optional, Tuple from text_generation_server.models import FlashCausalLM from text_generation_server.models.flash_causal_lm import set_sliding_window from text_generation_server.models.custom_modeling.flash_mistral_modeling import ( FlashMistralForCausalLM, MistralConfig, ) from text_generation_server.utils import ( initialize_torch_distributed, weight_files, Weights, ) from text_generation_server.utils.import_utils import SYSTEM tracer = trace.get_tracer(__name__) class BaseFlashMistral(FlashCausalLM): def __init__( self, model_cls, model_id: str, config_cls=AutoConfig, revision: Optional[str] = None, quantize: Optional[str] = None, speculator: Optional[str] = None, dtype: Optional[torch.dtype] = None, trust_remote_code: bool = False, tokenizer_class=AutoTokenizer, ): self.process_group, rank, world_size = initialize_torch_distributed() if torch.cuda.is_available(): device = torch.device(f"cuda:{rank}") dtype = torch.float16 if dtype is None else dtype elif SYSTEM == "xpu": device = torch.device(f"xpu:{rank}") dtype = torch.float16 if dtype is None else dtype else: raise NotImplementedError("FlashMistral is only available on GPU") tokenizer = tokenizer_class.from_pretrained( model_id, revision=revision, padding_side="left", truncation_side="left", trust_remote_code=trust_remote_code, ) config = config_cls.from_pretrained( model_id, revision=revision, trust_remote_code=trust_remote_code ) config.quantize = quantize config.speculator = speculator # Set context windows if getattr(config, "sliding_window", None) is not None: set_sliding_window(config.sliding_window) else: config.sliding_window = None torch.distributed.barrier(group=self.process_group) filenames = weight_files(model_id, revision=revision, extension=".safetensors") weights = Weights(filenames, device, dtype, process_group=self.process_group) if config.quantize in ["gptq", "awq", "marlin"]: weights._set_gptq_params(model_id, revision) prefix = "" model = model_cls(prefix, config, weights) self.cuda_graphs = {} torch.distributed.barrier(group=self.process_group) num_layers, num_kv_heads, head_size = self.get_layer_config(model) super().__init__( model=model, tokenizer=tokenizer, num_layers=num_layers, num_kv_heads=num_kv_heads, head_size=head_size, dtype=dtype, device=device, rank=rank, world_size=world_size, sliding_window=config.sliding_window, ) def get_layer_config(self, model) -> Tuple[int, int, int]: return ( len(model.model.layers), model.model.num_key_value_heads, model.model.head_size, ) class FlashMistral(BaseFlashMistral): def __init__( self, model_id: str, revision: Optional[str] = None, quantize: Optional[str] = None, speculator: Optional[str] = None, dtype: Optional[torch.dtype] = None, trust_remote_code: bool = False, ): super(FlashMistral, self).__init__( config_cls=MistralConfig, model_cls=FlashMistralForCausalLM, model_id=model_id, revision=revision, quantize=quantize, speculator=speculator, dtype=dtype, trust_remote_code=trust_remote_code, )