# Quick Tour The easiest way of getting started is using the official Docker container. Install Docker following [their installation instructions](https://docs.docker.com/get-docker/). ## Launching TGI Let's say you want to deploy [teknium/OpenHermes-2.5-Mistral-7B](https://huggingface.co/teknium/OpenHermes-2.5-Mistral-7B) model with TGI on an Nvidia GPU. Here is an example on how to do that: ```bash model=teknium/OpenHermes-2.5-Mistral-7B volume=$PWD/data # share a volume with the Docker container to avoid downloading weights every run docker run --gpus all --shm-size 1g -p 8080:80 -v $volume:/data \ ghcr.io/huggingface/text-generation-inference:2.4.1 \ --model-id $model ``` If you want to serve gated or private models, please refer to [this guide](https://huggingface.co/docs/text-generation-inference/en/basic_tutorials/gated_model_access) for detailed instructions. ### Supported hardware TGI supports various hardware. Make sure to check the [Using TGI with Nvidia GPUs](./installation_nvidia), [Using TGI with AMD GPUs](./installation_amd), [Using TGI with Intel GPUs](./installation_intel), [Using TGI with Gaudi](./installation_gaudi), [Using TGI with Inferentia](./installation_inferentia) guides depending on which hardware you would like to deploy TGI on. ## Consuming TGI Once TGI is running, you can use the `generate` endpoint or the Open AI Chat Completion API compatible [Messages API](https://huggingface.co/docs/text-generation-inference/en/messages_api) by doing requests. To learn more about how to query the endpoints, check the [Consuming TGI](./basic_tutorials/consuming_tgi) section, where we show examples with utility libraries and UIs. Below you can see a simple snippet to query the endpoint. ```python import requests headers = { "Content-Type": "application/json", } data = { 'inputs': 'What is Deep Learning?', 'parameters': { 'max_new_tokens': 20, }, } response = requests.post('http://127.0.0.1:8080/generate', headers=headers, json=data) print(response.json()) # {'generated_text': '\n\nDeep Learning is a subset of Machine Learning that is concerned with the development of algorithms that can'} ``` ```js async function query() { const response = await fetch( 'http://127.0.0.1:8080/generate', { method: 'POST', headers: { 'Content-Type': 'application/json'}, body: JSON.stringify({ 'inputs': 'What is Deep Learning?', 'parameters': { 'max_new_tokens': 20 } }) } ); } query().then((response) => { console.log(JSON.stringify(response)); }); /// {"generated_text":"\n\nDeep Learning is a subset of Machine Learning that is concerned with the development of algorithms that can"} ``` ```curl curl 127.0.0.1:8080/generate \ -X POST \ -d '{"inputs":"What is Deep Learning?","parameters":{"max_new_tokens":20}}' \ -H 'Content-Type: application/json' ``` To see all possible deploy flags and options, you can use the `--help` flag. It's possible to configure the number of shards, quantization, generation parameters, and more. ```bash docker run ghcr.io/huggingface/text-generation-inference:2.4.1 --help ```