hf_text-generation-inference/integration-tests/models/test_lora_mistral.py

135 lines
4.2 KiB
Python
Raw Permalink Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

import pytest
import requests
@pytest.fixture(scope="module")
def lora_mistral_handle(launcher):
with launcher(
"mistralai/Mistral-7B-v0.1",
lora_adapters=[
"predibase/dbpedia",
"predibase/customer_support",
],
cuda_graphs=[0],
) as handle:
yield handle
@pytest.fixture(scope="module")
async def lora_mistral(lora_mistral_handle):
await lora_mistral_handle.health(300)
return lora_mistral_handle.client
@pytest.mark.asyncio
@pytest.mark.private
async def test_lora_mistral(lora_mistral, response_snapshot):
response = await lora_mistral.generate(
"Test request", max_new_tokens=10, decoder_input_details=True
)
assert response.details.generated_tokens == 10
classification_prompt = """You are given the title and the body of an article below. Please determine the type of the article.\n### Title: Great White Whale\n\n### Body: Great White Whale is the debut album by the Canadian rock band Secret and Whisper. The album was in the works for about a year and was released on February 12 2008. A music video was shot in Pittsburgh for the album's first single XOXOXO. The album reached number 17 on iTunes's top 100 albums in its first week on sale.\n\n### Article Type:"""
@pytest.mark.asyncio
@pytest.mark.private
async def test_lora_mistral_without_adapter(lora_mistral, response_snapshot):
response = requests.post(
f"{lora_mistral.base_url}/generate",
headers=lora_mistral.headers,
json={
"inputs": classification_prompt,
"parameters": {
"max_new_tokens": 40,
"details": True,
},
},
)
assert response.status_code == 200
data = response.json()
assert (
data["generated_text"]
== "\n\n### 1. News\n### 2. Blog\n### 3. Article\n### 4. Review\n### 5. Other\n\n\n\n\n\n\n\n\n"
)
assert data == response_snapshot
@pytest.mark.asyncio
@pytest.mark.private
async def test_lora_mistral_with_dbpedia_adapter(lora_mistral, response_snapshot):
response = requests.post(
f"{lora_mistral.base_url}/generate",
headers=lora_mistral.headers,
json={
"inputs": classification_prompt,
"parameters": {
"max_new_tokens": 40,
"adapter_id": "predibase/dbpedia",
"details": True,
},
},
)
assert response.status_code == 200
data = response.json()
assert data["generated_text"] == " 11"
assert data == response_snapshot
@pytest.mark.asyncio
@pytest.mark.private
async def test_lora_mistral_with_customer_support_adapter(
lora_mistral, response_snapshot
):
print(lora_mistral.base_url)
print(lora_mistral.headers)
response = requests.post(
f"{lora_mistral.base_url}/generate",
headers=lora_mistral.headers,
json={
"inputs": "What are 3 unique words that describe you?",
"parameters": {
"max_new_tokens": 40,
"adapter_id": "predibase/customer_support",
"details": True,
},
},
)
assert response.status_code == 200
data = response.json()
assert (
data["generated_text"]
== "\n\nIm not sure if I can come up with 3 unique words that describe me, but Ill try.\n\n1. Creative\n2. Funny\n3."
)
assert data == response_snapshot
@pytest.mark.asyncio
@pytest.mark.private
async def test_lora_mistral_without_customer_support_adapter(
lora_mistral, response_snapshot
):
response = requests.post(
f"{lora_mistral.base_url}/generate",
headers=lora_mistral.headers,
json={
"inputs": "What are 3 unique words that describe you?",
"parameters": {
"max_new_tokens": 40,
"details": True,
},
},
)
assert response.status_code == 200
data = response.json()
assert (
data["generated_text"]
== "\n\nIm a very passionate person. Im very driven. Im very determined.\n\nWhat is your favorite thing about being a teacher?\n\nI love the fact"
)
assert data == response_snapshot