hf_text-generation-inference/server/text_generation_server/utils/adapter.py

323 lines
10 KiB
Python

# Origin: https://github.com/predibase/lorax
# Path: lorax/server/lorax_server/utils/adapter.py
# License: Apache License Version 2.0, January 2004
import warnings
import re
from dataclasses import dataclass
from functools import lru_cache
from typing import TYPE_CHECKING, Set, Tuple, Optional, List
from safetensors.torch import load_file
from transformers import AutoConfig, AutoTokenizer, PreTrainedTokenizer
from text_generation_server.utils.merges.strategies import merge_adapters
from text_generation_server.utils import hub
from text_generation_server.adapters.lora import LoraConfig
if TYPE_CHECKING:
from text_generation_server.adapters.config import AdapterConfig, ModuleMap
BASE_MODEL_ADAPTER_ID = "__base_model__"
@dataclass
class AdapterInfo:
id: str
path: Optional[str]
revision: Optional[str] = None
@dataclass
class AdapterParameters:
adapter_info: Tuple[AdapterInfo]
weights: Tuple[float]
merge_strategy: NotImplemented
density: float
majority_sign_method: NotImplemented
@dataclass
class AdapterSource:
adapter_id: str
model_id: str
revision: str
def parse_lora_adapters(lora_adapters: Optional[str]) -> List[AdapterInfo]:
if not lora_adapters:
return []
adapter_list = []
for adapter in lora_adapters.split(","):
adapter = adapter.strip()
if adapter.count("=") > 1 or adapter.count("@") > 1:
raise ValueError(f"Invalid LoRA adapter format: {adapter}")
match = re.match(r"^([^=@]+)(?:=([^@]+))?(?:@(.+))?$", adapter)
if match:
adapter_id, path, revision = match.groups()
adapter_list.append(
AdapterInfo(id=adapter_id, path=path, revision=revision)
)
else:
raise ValueError(f"Invalid LoRA adapter format: {adapter}")
return adapter_list
def load_and_merge_adapters(
model_id: str,
adapter_parameters: AdapterParameters,
adapter_index: int,
weight_names: Tuple[str],
trust_remote_code: bool = False,
) -> Tuple["ModuleMap", "AdapterConfig", Set[str], PreTrainedTokenizer]:
if len(adapter_parameters.adapter_info) == 1:
adapter = next(iter(adapter_parameters.adapter_info))
return load_module_map(
model_id,
adapter.revision,
adapter.id,
adapter.path,
weight_names,
trust_remote_code,
)
adapter_params = AdapterParametersContainer(adapter_parameters, adapter_index)
return _load_and_merge(
model_id,
adapter_params,
weight_names,
trust_remote_code,
)
@dataclass
class AdapterParametersContainer:
adapter_parameters: AdapterParameters
adapter_index: int
def __hash__(self) -> int:
return self.adapter_index
@lru_cache(maxsize=32)
def _load_and_merge(
model_id: str,
adapter_params: AdapterParametersContainer,
weight_names: Tuple[str],
trust_remote_code: bool = False,
) -> Tuple["ModuleMap", "AdapterConfig", Set[str], PreTrainedTokenizer]:
params = adapter_params.adapter_parameters
adapters_to_merge = []
merged_weight_names = set()
tokenizer = None
for adapter in params.adapter_info:
if adapter.id == BASE_MODEL_ADAPTER_ID:
raise ValueError("Base model adapter cannot be merged.")
module_map, adapter_config, adapter_weight_names, adapter_tokenizer = (
load_module_map(
model_id,
adapter.revision,
adapter.id,
adapter.path,
weight_names,
trust_remote_code,
)
)
adapters_to_merge.append((module_map, adapter_config))
merged_weight_names = merged_weight_names.union(adapter_weight_names)
if tokenizer is None:
tokenizer = adapter_tokenizer
if len(adapters_to_merge) == 0:
raise ValueError("No adapters to merge.")
module_map, adapter_config = merge_adapters(adapters_to_merge, params)
return module_map, adapter_config, merged_weight_names, tokenizer
def check_architectures(
model_id: str,
adapter_id: str,
adapter_config: "AdapterConfig",
trust_remote_code: bool = False,
):
try:
if not adapter_config.base_model_name_or_path:
# Avoid execution latency caused by the network connection retrying for AutoConfig.from_pretrained(None)
return
expected_config = AutoConfig.from_pretrained(
model_id, trust_remote_code=trust_remote_code
)
model_config = AutoConfig.from_pretrained(
adapter_config.base_model_name_or_path, trust_remote_code=trust_remote_code
)
except Exception as e:
warnings.warn(
f"Unable to check architecture compatibility for adapter '{adapter_id}' "
f"against model '{model_id}'. Assuming they are compatible. Error: {e}"
)
return
if model_config.architectures == expected_config.architectures:
warnings.warn(
f"Adapter '{adapter_id}' was not trained on base model '{model_id}'. "
f"If you encounter issues, use --model-id '{adapter_config.base_model_name_or_path}' instead."
)
else:
# TODO(travis): revisit this when we support clasification heads which will not use CausalLM
raise ValueError(
f"Adapter '{adapter_id}' is not compatible with model '{model_id}'. "
f"Architectures differ: {model_config.architectures} != {expected_config.architectures}. "
f"Use --model-id '{adapter_config.base_model_name_or_path}' instead."
)
@lru_cache(maxsize=128)
def load_module_map(
model_id: str,
revision: str,
adapter_id: str,
adapter_path: Optional[str],
weight_names: Tuple[str],
trust_remote_code: bool = False,
) -> Tuple["ModuleMap", "AdapterConfig", Set[str], PreTrainedTokenizer]:
adapter_config = LoraConfig.load(adapter_path or adapter_id, None)
if not adapter_path and adapter_config.base_model_name_or_path != model_id:
check_architectures(model_id, adapter_id, adapter_config, trust_remote_code)
adapter_filenames = (
hub._adapter_weight_files_from_dir(adapter_path, extension=".safetensors")
if adapter_path
else hub._cached_adapter_weight_files(
adapter_id, revision=revision, extension=".safetensors"
)
)
# throw an error if no adapter weights are found
if not adapter_filenames:
raise FileNotFoundError(
f"No adapter weights found for adapter '{adapter_id}' and revision '{revision}'."
)
try:
adapter_tokenizer = AutoTokenizer.from_pretrained(
adapter_config.config_path,
trust_remote_code=trust_remote_code,
)
except Exception:
# Adapter does not have a tokenizer, so fallback to base model tokenizer
adapter_tokenizer = None
# load adapter weights from all shards (should have relatively small memory footprint)
adapter_weights = {}
for filename in adapter_filenames:
adapter_weights.update(load_file(filename))
# map the model weights to the relevant adapter weights (LoRA A and B matrices)
module_map, adapter_weight_names = adapter_config.map_weights_for_model(
adapter_weights, weight_names
)
return module_map, adapter_config, adapter_weight_names, adapter_tokenizer
def get_attn_weights(i, layer):
qkv = layer.self_attn.query_key_value
weights = {}
for k in ["q", "k", "v"]:
key = (i, f"{k}_proj")
value = (f"model.layers.{i}.self_attn.{k}_proj", qkv)
weights[key] = value
# also add the qkv_proj weight for the adapter
weights[(i, "qkv_proj")] = (
f"model.layers.{i}.self_attn.qkv_proj",
qkv,
)
weights[(i, "o_proj")] = (
f"model.layers.{i}.self_attn.o_proj",
layer.self_attn.o_proj,
)
return weights
def get_mlp_weights(i, layer):
weights = {}
if hasattr(layer, "mlp"):
mlp = layer.mlp
if hasattr(mlp, "gate_up_proj"):
# handle combined gate_up_proj (e.g., for some LLaMA variants)
weights.update(
{
(i, "gate_proj"): (
f"model.layers.{i}.mlp.gate_proj",
mlp.gate_up_proj,
),
(i, "up_proj"): (f"model.layers.{i}.mlp.up_proj", mlp.gate_up_proj),
}
)
else:
# handle separate gate_proj, up_proj, and down_proj (e.g., for Gemma)
if hasattr(mlp, "gate_proj"):
weights[(i, "gate_proj")] = (
f"model.layers.{i}.mlp.gate_proj",
mlp.gate_proj,
)
if hasattr(mlp, "up_proj"):
weights[(i, "up_proj")] = (f"model.layers.{i}.mlp.up_proj", mlp.up_proj)
if hasattr(mlp, "down_proj"):
weights[(i, "down_proj")] = (
f"model.layers.{i}.mlp.down_proj",
mlp.down_proj,
)
return weights
# build_layer_weight_lookup creates a mapping of model layers to their corresponding
# weight tensors and paths. It builds a dictionary that maps layer identifiers to tuples
# containing the weight tensor path and the actual layer object. This mapping is needed
# for the lora adapter to know which weights to update when applying the adapter.
def build_layer_weight_lookup(model):
if hasattr(model, "language_model"):
m = model.language_model.model
elif hasattr(model, "text_model"):
m = model.text_model.model
else:
m = model.model
layer_weights = {}
for i, layer in enumerate(m.layers):
attn_weights = get_attn_weights(i, layer)
mlp_weights = get_mlp_weights(i, layer)
layer_weights.update(attn_weights)
layer_weights.update(mlp_weights)
lm_head = None
if hasattr(m, "lm_head"):
lm_head = m.lm_head
elif hasattr(model, "lm_head"):
lm_head = model.lm_head
if lm_head:
layer_weights[(0, "lm_head")] = ("lm_head", lm_head)
return layer_weights