hf_text-generation-inference/server/text_generation_server/server.py

286 lines
9.5 KiB
Python

import asyncio
import os
import torch
import time
import signal
from grpc import aio
from loguru import logger
from grpc_reflection.v1alpha import reflection
from pathlib import Path
from typing import List, Optional
from text_generation_server.cache import Cache
from text_generation_server.interceptor import ExceptionInterceptor
from text_generation_server.models import Model, get_model_with_lora_adapters
from text_generation_server.utils.adapter import AdapterInfo
try:
from text_generation_server.models.pali_gemma import PaliGemmaBatch
from text_generation_server.models.vlm_causal_lm import (
VlmCausalLMBatch,
)
from text_generation_server.models.idefics_causal_lm import IdeficsCausalLMBatch
VLM_BATCH_TYPES = {PaliGemmaBatch, VlmCausalLMBatch, IdeficsCausalLMBatch}
except (ImportError, NotImplementedError):
# These imports can fail on CPU/Non flash.
VLM_BATCH_TYPES = set()
from text_generation_server.pb import generate_pb2_grpc, generate_pb2
from text_generation_server.tracing import UDSOpenTelemetryAioServerInterceptor
from text_generation_server.models.globals import set_adapter_to_index
class SignalHandler:
KEEP_PROCESSING = True
def __init__(self):
signal.signal(signal.SIGINT, self.exit_gracefully)
signal.signal(signal.SIGTERM, self.exit_gracefully)
def exit_gracefully(self, signum, frame):
print(f"Exiting gracefully: Signal {signum}")
self.KEEP_PROCESSING = False
class TextGenerationService(generate_pb2_grpc.TextGenerationServiceServicer):
def __init__(
self,
model: Model,
cache: Cache,
quantize: Optional[str],
server_urls: List[str],
):
self.cache = cache
self.model = model
self.quantize = quantize
self.server_urls = server_urls
# For some reason, inference_mode does not work well with GLOO which we use on CPU
if model.device.type == "cuda":
# Force inference mode for the lifetime of TextGenerationService
self._inference_mode_raii_guard = torch._C._InferenceMode(True)
async def Info(self, request, context):
return self.model.info
async def Health(self, request, context):
if self.model.device.type == "cuda":
torch.zeros((2, 2)).cuda()
return generate_pb2.HealthResponse()
async def ServiceDiscovery(self, request, context):
return generate_pb2.ServiceDiscoveryResponse(urls=self.server_urls)
async def ClearCache(self, request, context):
if request.HasField("id"):
self.cache.delete(request.id)
else:
self.cache.clear()
return generate_pb2.ClearCacheResponse()
async def FilterBatch(self, request, context):
batch = self.cache.pop(request.batch_id)
if batch is None:
raise ValueError(f"Batch ID {request.batch_id} not found in cache.")
filtered_batch = batch.filter(request.request_ids)
self.cache.set(filtered_batch)
return generate_pb2.FilterBatchResponse(batch=filtered_batch.to_pb())
async def Warmup(self, request, context):
if self.quantize in {"exl2", "gptq"}:
try:
# When using GPTQ, Exllama kernels need some global kernels
# For which we have the finale shapes only after the model has loaded
# This will allocate those buffers.
from text_generation_server.layers.gptq import (
create_exllama_buffers,
set_device,
)
set_device(self.model.device)
create_exllama_buffers(request.max_prefill_tokens)
except ImportError:
pass
if (
self.model.batch_type in VLM_BATCH_TYPES
): # Hack, i would rather use kwargs in the `from_pb` call
batch = self.model.batch_type.from_pb_processor(
request.batch,
self.model.tokenizer,
self.model.processor,
self.model.model.config,
self.model.dtype,
self.model.device,
)
else:
batch = self.model.batch_type.from_pb(
request.batch, self.model.tokenizer, self.model.dtype, self.model.device
)
max_supported_total_tokens = self.model.warmup(batch)
return generate_pb2.WarmupResponse(
max_supported_total_tokens=max_supported_total_tokens
)
async def Prefill(self, request, context):
start = time.time_ns()
if (
self.model.batch_type in VLM_BATCH_TYPES
): # Hack, i would rather use kwargs in the `from_pb` call
batch = self.model.batch_type.from_pb_processor(
request.batch,
self.model.tokenizer,
self.model.processor,
self.model.model.config,
self.model.dtype,
self.model.device,
)
else:
batch = self.model.batch_type.from_pb(
request.batch, self.model.tokenizer, self.model.dtype, self.model.device
)
generations, next_batch, timings = self.model.generate_token(batch)
self.cache.set(next_batch)
return generate_pb2.PrefillResponse(
generations=[generation.to_pb() for generation in generations],
batch=next_batch.to_pb() if next_batch else None,
forward_ns=timings[0],
decode_ns=timings[1],
total_ns=time.time_ns() - start,
)
async def Decode(self, request, context):
start = time.time_ns()
if len(request.batches) == 0:
raise ValueError("Must provide at least one batch")
batches = []
for batch_pb in request.batches:
batch = self.cache.pop(batch_pb.id)
if batch is None:
raise ValueError(f"Batch ID {batch_pb.id} not found in cache.")
batches.append(batch)
if len(batches) == 0:
raise ValueError("All batches are empty")
if len(batches) > 1:
start_concat = time.time_ns()
batch = self.model.batch_type.concatenate(batches)
concat_ns = time.time_ns() - start_concat
else:
batch = batches[0]
concat_ns = None
generations, next_batch, timings = self.model.generate_token(batch)
self.cache.set(next_batch)
return generate_pb2.DecodeResponse(
generations=[generation.to_pb() for generation in generations],
batch=next_batch.to_pb() if next_batch else None,
concat_ns=concat_ns,
forward_ns=timings[0],
decode_ns=timings[1],
total_ns=time.time_ns() - start,
)
def serve(
model_id: str,
lora_adapters: Optional[List[AdapterInfo]],
revision: Optional[str],
sharded: bool,
quantize: Optional[str],
speculate: Optional[int],
dtype: Optional[str],
trust_remote_code: bool,
uds_path: Path,
max_input_tokens: int,
):
async def serve_inner(
model_id: str,
lora_adapters: Optional[List[AdapterInfo]],
revision: Optional[str],
sharded: bool = False,
quantize: Optional[str] = None,
speculate: Optional[int] = None,
dtype: Optional[str] = None,
trust_remote_code: bool = False,
):
unix_socket_template = "unix://{}-{}"
adapter_to_index = {}
if sharded:
server_urls = [
unix_socket_template.format(uds_path, rank)
for rank in range(int(os.environ["WORLD_SIZE"]))
]
local_url = server_urls[int(os.environ["RANK"])]
else:
local_url = unix_socket_template.format(uds_path, 0)
server_urls = [local_url]
try:
model = get_model_with_lora_adapters(
model_id,
lora_adapters,
revision,
sharded,
quantize,
speculate,
dtype,
trust_remote_code,
max_input_tokens,
adapter_to_index,
)
except Exception:
logger.exception("Error when initializing model")
raise
set_adapter_to_index(adapter_to_index)
server = aio.server(
interceptors=[
ExceptionInterceptor(),
UDSOpenTelemetryAioServerInterceptor(),
],
options=[
# Set the maximum possible message length: i32::MAX
("grpc.max_receive_message_length", (1 << 31) - 1)
],
)
generate_pb2_grpc.add_TextGenerationServiceServicer_to_server(
TextGenerationService(model, Cache(), quantize, server_urls), server
)
SERVICE_NAMES = (
generate_pb2.DESCRIPTOR.services_by_name["TextGenerationService"].full_name,
reflection.SERVICE_NAME,
)
reflection.enable_server_reflection(SERVICE_NAMES, server)
server.add_insecure_port(local_url)
await server.start()
logger.info("Server started at {}".format(local_url))
signal_handler = SignalHandler()
while signal_handler.KEEP_PROCESSING:
await asyncio.sleep(0.5)
asyncio.run(
serve_inner(
model_id,
lora_adapters,
revision,
sharded,
quantize,
speculate,
dtype,
trust_remote_code,
)
)