hf_text-generation-inference/server/text_generation_server/models/model.py

122 lines
4.2 KiB
Python
Raw Blame History

import inspect
import torch
from abc import ABC, abstractmethod
from typing import List, Tuple, Optional, TypeVar, Type
from transformers import PreTrainedTokenizerBase, PretrainedConfig
from text_generation_server.models.types import Batch, Generation
from text_generation_server.utils.speculate import get_speculate
from text_generation_server.pb.generate_pb2 import InfoResponse
B = TypeVar("B", bound=Batch)
class Model(ABC):
def __init__(
self,
model: torch.nn.Module,
tokenizer: PreTrainedTokenizerBase,
requires_padding: bool,
dtype: torch.dtype,
device: torch.device,
rank: int = 0,
world_size: int = 1,
sliding_window: Optional[int] = None,
speculate: Optional[int] = None,
):
self.model = model.eval()
self.tokenizer = tokenizer
# all_special_ids is not set correctly if the rust tokenizer is unpacked
# TODO report this to transformers.
other_special_ids = {
id for id, token in tokenizer.added_tokens_decoder.items() if token.special
}
self.all_special_ids = set(tokenizer.all_special_ids)
self.all_special_ids.update(other_special_ids)
self.requires_padding = requires_padding
self.dtype = dtype
self.device = device
self.rank = rank
self.world_size = world_size
self.sliding_window = sliding_window if sliding_window != -1 else None
if speculate is None:
speculate = get_speculate()
self.speculate = speculate
self.has_position_ids = (
inspect.signature(model.forward).parameters.get("position_ids", None)
is not None
)
self.check_initialized()
@property
def info(self) -> InfoResponse:
if self.requires_padding and self.sliding_window is not None:
raise NotImplementedError("sliding_window is not implemented with padding")
return InfoResponse(
requires_padding=self.requires_padding,
dtype=str(self.dtype),
device_type=self.device.type,
window_size=self.sliding_window,
speculate=self.speculate,
)
@property
@abstractmethod
def batch_type(self) -> Type[B]:
raise NotImplementedError
@abstractmethod
def generate_token(
self, batch: B
) -> Tuple[List[Generation], Optional[B], Tuple[int, int]]:
raise NotImplementedError
def warmup(self, batch: B) -> Optional[int]:
self.generate_token(batch)
return None
def decode_token(
self,
all_input_ids: List[int],
prefix_offset: int = 0,
read_offset: int = 0,
skip_special_tokens: bool = False,
) -> Tuple[str, int, int]:
"""Hack to hopefully support generate_stream for the maximum number of tokenizers"""
# The prefix text is necessary only to defeat cleanup algorithms in the decode
# which decide to add a space or not depending on the surrounding ids.
prefix_text = self.tokenizer.decode(
all_input_ids[prefix_offset:read_offset],
skip_special_tokens=skip_special_tokens,
)
new_text = self.tokenizer.decode(
all_input_ids[prefix_offset:], skip_special_tokens=skip_special_tokens
)
if len(new_text) > len(prefix_text) and not new_text.endswith("<EFBFBD>"):
# utf-8 char at the end means it's a potential unfinished byte sequence
# from byte fallback tokenization.
# If it's in the middle, it's probably a real invalid id generated
# by the model
new_text = new_text[len(prefix_text) :]
return new_text, read_offset, len(all_input_ids)
else:
return "", prefix_offset, read_offset
def check_initialized(self):
uninitialized_parameters = []
for n, p in self.model.named_parameters():
if p.data.device == torch.device("meta"):
uninitialized_parameters.append(n)
if uninitialized_parameters:
raise RuntimeError(
f"found uninitialized parameters in model {self.__class__.__name__}: {uninitialized_parameters}"
)