hf_text-generation-inference/server/text_generation_server/models/flash_neox.py

149 lines
5.6 KiB
Python

import torch
import torch.distributed
from accelerate import init_empty_weights
from opentelemetry import trace
from safetensors import safe_open
from transformers import AutoTokenizer, AutoConfig
from typing import Optional, List
from text_generation_server.models import FlashCausalLM
from text_generation_server.models.custom_modeling.flash_neox_modeling import (
FlashGPTNeoXForCausalLM,
TensorParallelEmbedding,
TensorParallelRowLinear,
TensorParallelColumnLinear,
)
from text_generation_server.utils import (
initialize_torch_distributed,
weight_files,
)
tracer = trace.get_tracer(__name__)
class FlashNeoX(FlashCausalLM):
def __init__(self, model_id: str, revision: Optional[str] = None, quantize=False):
super(FlashNeoX, self).__init__(
FlashGPTNeoXForCausalLM, model_id, revision, quantize
)
class FlashNeoXSharded(FlashNeoX):
def __init__(
self, model_id: str, revision: Optional[str] = None, quantize: bool = False
):
self.process_group, self.rank, self.world_size = initialize_torch_distributed()
self.master = self.rank == 0
if torch.cuda.is_available():
device = torch.device(f"cuda:{self.rank}")
dtype = torch.bfloat16 if torch.cuda.is_bf16_supported() else torch.float16
else:
raise NotImplementedError("FlashNeoX is only available on GPU")
if quantize:
raise NotImplementedError("FlashNeoX does not support quantization")
tokenizer = AutoTokenizer.from_pretrained(
model_id, revision=revision, padding_side="left", truncation_side="left"
)
config = AutoConfig.from_pretrained(
model_id,
revision=revision,
)
torch.distributed.barrier(group=self.process_group)
filenames = weight_files(model_id, revision=revision, extension=".safetensors")
with init_empty_weights():
model = FlashGPTNeoXForCausalLM(config, self.process_group)
torch.distributed.barrier(group=self.process_group)
self.load_weights(
model,
filenames,
device=device,
dtype=dtype,
rank=self.rank,
world_size=self.world_size,
)
model.post_load_weights()
self.model = model.eval()
torch.distributed.barrier(group=self.process_group)
super(FlashCausalLM, self).__init__(
tokenizer=tokenizer,
device=device,
)
@staticmethod
def load_weights(
model,
filenames: List[str],
device: torch.device,
dtype: torch.dtype,
rank: int,
world_size: int,
):
parameters = dict(model.named_parameters())
for file in filenames:
with safe_open(file, framework="pt", device=str(device)) as f:
for name in f.keys():
module_name, param_name = name.rsplit(".", 1)
module = model.get_submodule(module_name)
current_parameter_tensor = parameters.get(name, None)
slice_ = f.get_slice(name)
if isinstance(module, TensorParallelColumnLinear):
size = slice_.get_shape()[0]
block_size = size // world_size
start = rank * block_size
stop = (rank + 1) * block_size
tensor = slice_[start:stop]
elif isinstance(module, TensorParallelRowLinear):
if param_name == "weight":
size = slice_.get_shape()[1]
block_size = size // world_size
start = rank * block_size
stop = (rank + 1) * block_size
tensor = slice_[:, start:stop]
else:
tensor = slice_[:]
# XXX: Hack for Rowlinear to add the bias only once.
if rank != 0:
tensor = torch.zeros_like(tensor)
elif isinstance(module, TensorParallelEmbedding):
size = slice_.get_shape()[0]
block_size = size // world_size
start = rank * block_size
stop = (rank + 1) * block_size
tensor = slice_[start:stop]
elif name == "embed_out.weight" and model.gpt_neox.tp_embeddings:
size = slice_.get_shape()[0]
block_size = size // world_size
start = rank * block_size
stop = (rank + 1) * block_size
tensor = slice_[start:stop]
else:
try:
tensor = slice_[:]
except:
tensor = f.get_tensor(name)
if (
current_parameter_tensor is not None
and current_parameter_tensor.shape != tensor.shape
):
raise ValueError(
f"Name {name} -- Current {current_parameter_tensor.shape} and got {tensor.shape}"
)
tensor = tensor.contiguous().to(dtype)
if current_parameter_tensor is not None:
module._parameters[param_name] = tensor
else:
module._buffers[param_name] = tensor