hf_text-generation-inference/server/text_generation_server/models/globals.py

52 lines
1.2 KiB
Python

import torch
import os
from loguru import logger
from typing import Dict
MEM_POOL = torch.cuda.graph_pool_handle() if torch.cuda.is_available() else None
# This is overridden by the cli
cuda_graphs = os.getenv("CUDA_GRAPHS")
if cuda_graphs is not None:
try:
cuda_graphs = [int(item) for item in cuda_graphs.split(",")]
except Exception as e:
raise RuntimeError(
f"Could not parse cuda graphs {cuda_graphs}, expected comma separated list for batch sizes to run on: {e}"
)
else:
cuda_graphs = None
# sorting the cuda graphs in descending order helps reduce the
# memory impact and results in less memory usage
if cuda_graphs is not None:
cuda_graphs.sort(reverse=True)
CUDA_GRAPHS = cuda_graphs
# This is overridden at model loading.
global MODEL_ID
MODEL_ID = None
def set_model_id(model_id: str):
global MODEL_ID
MODEL_ID = model_id
# NOTE: eventually we should move this into the router and pass back the
# index in all cases.
global ADAPTER_TO_INDEX
ADAPTER_TO_INDEX: Dict[str, int] = None
def set_adapter_to_index(adapter_to_index: Dict[str, int]):
global ADAPTER_TO_INDEX
ADAPTER_TO_INDEX = adapter_to_index
def get_adapter_to_index():
global ADAPTER_TO_INDEX
return ADAPTER_TO_INDEX