47 lines
1.3 KiB
Python
47 lines
1.3 KiB
Python
import torch
|
|
|
|
from typing import Optional, Tuple
|
|
|
|
from transformers import (
|
|
AutoProcessor,
|
|
)
|
|
from text_generation_server.models.custom_modeling.llava_next import (
|
|
LlavaNextForConditionalGeneration,
|
|
)
|
|
|
|
from text_generation_server.models.vlm_causal_lm import VlmCausalLM
|
|
|
|
|
|
class LlavaNext(VlmCausalLM):
|
|
def __init__(
|
|
self,
|
|
model_id: str,
|
|
revision: Optional[str] = None,
|
|
quantize: Optional[str] = None,
|
|
speculator: Optional[str] = None,
|
|
dtype: Optional[torch.dtype] = None,
|
|
trust_remote_code: bool = False,
|
|
):
|
|
self.processor = AutoProcessor.from_pretrained(
|
|
model_id, revision=revision, trust_remote_code=trust_remote_code
|
|
)
|
|
super().__init__(
|
|
model_cls=LlavaNextForConditionalGeneration,
|
|
model_id=model_id,
|
|
revision=revision,
|
|
quantize=quantize,
|
|
speculator=speculator,
|
|
dtype=dtype,
|
|
trust_remote_code=trust_remote_code,
|
|
)
|
|
|
|
def get_layer_config(self, model) -> Tuple[int, int, int]:
|
|
return (
|
|
len(model.language_model.model.layers),
|
|
model.language_model.model.num_key_value_heads,
|
|
model.language_model.model.head_size,
|
|
)
|
|
|
|
def max_past(self) -> Optional[int]:
|
|
return getattr(self.model.language_model, "max_past", None)
|