hf_text-generation-inference/server/text_generation/utils/dist.py

36 lines
977 B
Python

import os
import torch
from datetime import timedelta
def initialize_torch_distributed():
rank = int(os.getenv("RANK", "0"))
world_size = int(os.getenv("WORLD_SIZE", "1"))
if torch.cuda.is_available():
from torch.distributed import ProcessGroupNCCL
# Set the device id.
assert world_size <= torch.cuda.device_count(), "Each process is one gpu"
device = rank % torch.cuda.device_count()
torch.cuda.set_device(device)
backend = "nccl"
options = ProcessGroupNCCL.Options()
options.is_high_priority_stream = True
options._timeout = timedelta(seconds=60)
else:
backend = "gloo"
options = None
# Call the init process.
torch.distributed.init_process_group(
backend=backend,
world_size=world_size,
rank=rank,
timeout=timedelta(seconds=60),
pg_options=options,
)
return torch.distributed.group.WORLD, rank, world_size