hf_text-generation-inference/server/text_generation_server/utils/merges/strategies.py

224 lines
7.2 KiB
Python

import copy
from abc import ABC
from collections import defaultdict
from typing import TYPE_CHECKING, Dict, List, Tuple, Type, Union
import torch
class AdapterParameters:
def __init__(
self, adapter_ids, weights, merge_strategy, density, majority_sign_method
):
self.adapter_ids = adapter_ids
self.weights = weights
self.merge_strategy = merge_strategy
self.density = density
self.majority_sign_method = majority_sign_method
from text_generation_server.utils.merges.utils import (
calculate_majority_sign_mask,
disjoint_merge,
prune,
)
if TYPE_CHECKING:
from text_generation_server.adapters.lora import LoraConfig
from text_generation_server.utils.adapter import ModuleMap
def _apply_weights(
tensors: Union[torch.Tensor, List[torch.Tensor]], w: torch.Tensor
) -> torch.Tensor:
if isinstance(tensors, torch.Tensor):
t = tensors
else:
t = torch.stack(tensors, dim=0)
# element-wise weighting of each task tensor
# need to unsqueeze weights to match task tensor dimensions
# for multiplication to apply element-wise
while len(t.shape) > len(w.shape):
w = w.unsqueeze(-1)
return t * w
class MergeStrategy(ABC):
def merge(
self, task_tensors: List[torch.Tensor], weights: torch.Tensor
) -> torch.Tensor:
raise NotImplementedError()
class LinearMerge(MergeStrategy):
def __init__(self, **kwargs):
pass
def merge(
self, task_tensors: List[torch.Tensor], weights: torch.Tensor
) -> torch.Tensor:
weighted_task_tensors = _apply_weights(task_tensors, weights)
return weighted_task_tensors.sum(dim=0)
class TiesMerge(MergeStrategy):
def __init__(self, density: float, majority_sign_method: str = "total", **kwargs):
self.density = density
self.majority_sign_method = majority_sign_method
def merge(
self, task_tensors: List[torch.Tensor], weights: torch.Tensor
) -> torch.Tensor:
# sparsify
task_tensors = [
prune(tensor, self.density, method="magnitude") for tensor in task_tensors
]
task_tensors = torch.stack(task_tensors, dim=0)
# elect sign before applying weights
majority_sign_mask = calculate_majority_sign_mask(
task_tensors, method=self.majority_sign_method
)
weighted_task_tensors = _apply_weights(task_tensors, weights)
# disjoint merge
return disjoint_merge(weighted_task_tensors, majority_sign_mask)
class DareLinearMerge(MergeStrategy):
def __init__(self, density: float, **kwargs):
self.density = density
def merge(
self, task_tensors: List[torch.Tensor], weights: torch.Tensor
) -> torch.Tensor:
# sparsify
task_tensors = [
prune(tensor, self.density, method="random", rescale=True)
for tensor in task_tensors
]
weighted_task_tensors = _apply_weights(task_tensors, weights)
return weighted_task_tensors.sum(dim=0)
class DareTiesMerge(MergeStrategy):
def __init__(self, density: float, majority_sign_method: str = "total", **kwargs):
self.density = density
self.majority_sign_method = majority_sign_method
def merge(
self, task_tensors: List[torch.Tensor], weights: torch.Tensor
) -> torch.Tensor:
# sparsify
task_tensors = [
prune(tensor, self.density, method="random", rescale=True)
for tensor in task_tensors
]
task_tensors = torch.stack(task_tensors, dim=0)
# elect sign before applying weights
majority_sign_mask = calculate_majority_sign_mask(
task_tensors, method=self.majority_sign_method
)
weighted_task_tensors = _apply_weights(task_tensors, weights)
# disjoint merge
mixed_task_tensors = disjoint_merge(weighted_task_tensors, majority_sign_mask)
return mixed_task_tensors
strategy_registry: Dict[str, Type[MergeStrategy]] = {
"linear": LinearMerge,
"ties": TiesMerge,
"dare_linear": DareLinearMerge,
"dare_ties": DareTiesMerge,
}
def merge_adapters(
adapters: List[Tuple["ModuleMap", "LoraConfig"]],
merge_params: AdapterParameters,
) -> Tuple["ModuleMap", "LoraConfig"]:
# strategy_name = MergeStrategyEnum.Name(merge_params.merge_strategy).lower()
strategy_name = "linear"
weights = merge_params.weights
if not weights:
weights = torch.ones(len(adapters))
else:
weights = torch.tensor(weights)
merge_config = {
"density": merge_params.density,
# "majority_sign_method": MajoritySignMethodEnum.Name(
# merge_params.majority_sign_method
# ).lower(),
"majority_sign_method": "total",
}
merge_strategy = strategy_registry[strategy_name](**merge_config)
module_maps: Dict[str, Dict[str, Dict[str, List[torch.Tensor]]]] = defaultdict(
lambda: defaultdict(lambda: defaultdict(list))
)
lora_configs = []
weight_name_to_adapter_idx = defaultdict(list)
# input is list of (module_map, lora_config) tuples
# convert into dict[k][param_name] -> list of tensors
for idx, (module_map, lora_config) in enumerate(adapters):
for weight_name, data in module_map.items():
weight_name_to_adapter_idx[weight_name].append(idx)
for k, (param_data, param_name) in data.items():
module_maps[weight_name][k][param_name].append(param_data)
lora_configs.append(lora_config)
# validate lora configs are compatible
_validate_lora_configs(lora_configs)
# merge tensors for each module such that we have a single ModuleMap:
# dict[k] -> merged tensor
merged_module_map: "ModuleMap" = defaultdict(dict)
for weight_name, data in module_maps.items():
indices = weight_name_to_adapter_idx[weight_name]
param_weights = weights[indices]
for k, param_data in data.items():
for param_name, tensors in param_data.items():
merged_tensor = merge_strategy.merge(tensors, param_weights)
merged_module_map[weight_name][k] = (merged_tensor, param_name)
# merge lora configs
merged_lora_config = _merge_lora_configs(lora_configs)
return merged_module_map, merged_lora_config
def _validate_lora_configs(lora_configs: List["LoraConfig"]):
# check that all configs have the same rank
ranks = set(lora_config.r for lora_config in lora_configs)
if len(ranks) > 1:
raise ValueError(
f"unable to merge adapters, lora configs have different ranks: {ranks}"
)
if all(len(lora_config.target_modules) == 0 for lora_config in lora_configs):
raise ValueError(
"unable to merge adapters, lora configs have no target modules"
)
def _merge_lora_configs(lora_configs: List["LoraConfig"]) -> "LoraConfig":
merged_lora_config = copy.copy(lora_configs[0])
# merge target modules as a union operation
merged_target_modules = sorted(
set(
module
for lora_config in lora_configs
for module in lora_config.target_modules
)
)
merged_lora_config.target_modules = merged_target_modules
return merged_lora_config