208 lines
6.7 KiB
Python
208 lines
6.7 KiB
Python
import torch
|
|
import torch.distributed
|
|
|
|
from opentelemetry import trace
|
|
from transformers import AutoTokenizer, AutoConfig
|
|
from typing import Optional, Tuple, Dict, List
|
|
|
|
from text_generation_server.models import FlashCausalLM
|
|
from text_generation_server.models.flash_causal_lm import set_sliding_window
|
|
from text_generation_server.models.custom_modeling.flash_mistral_modeling import (
|
|
FlashMistralForCausalLM,
|
|
MistralConfig,
|
|
)
|
|
from text_generation_server.utils import (
|
|
initialize_torch_distributed,
|
|
weight_files,
|
|
Weights,
|
|
)
|
|
from text_generation_server.utils.import_utils import SYSTEM
|
|
|
|
tracer = trace.get_tracer(__name__)
|
|
|
|
|
|
ADAPTER_LAYERS = [
|
|
"q_proj",
|
|
"k_proj",
|
|
"v_proj",
|
|
"o_proj",
|
|
"gate_proj",
|
|
"up_proj",
|
|
"down_proj",
|
|
]
|
|
ROW_PARALLEL = {"o_proj", "down_proj", "lm_head"}
|
|
|
|
|
|
class BaseFlashMistral(FlashCausalLM):
|
|
def __init__(
|
|
self,
|
|
model_cls,
|
|
model_id: str,
|
|
config_cls=AutoConfig,
|
|
revision: Optional[str] = None,
|
|
quantize: Optional[str] = None,
|
|
speculator: Optional[str] = None,
|
|
dtype: Optional[torch.dtype] = None,
|
|
trust_remote_code: bool = False,
|
|
tokenizer_class=AutoTokenizer,
|
|
):
|
|
self.process_group, rank, world_size = initialize_torch_distributed()
|
|
if torch.cuda.is_available():
|
|
device = torch.device(f"cuda:{rank}")
|
|
dtype = torch.float16 if dtype is None else dtype
|
|
elif SYSTEM == "ipex":
|
|
if hasattr(torch, "xpu") and torch.xpu.is_available():
|
|
device = torch.device(f"xpu:{rank}")
|
|
dtype = torch.float16 if dtype is None else dtype
|
|
else:
|
|
device = torch.device("cpu")
|
|
dtype = torch.bfloat16 if dtype is None else dtype
|
|
else:
|
|
raise NotImplementedError("FlashMistral is only available on GPU")
|
|
|
|
tokenizer = tokenizer_class.from_pretrained(
|
|
model_id,
|
|
revision=revision,
|
|
padding_side="left",
|
|
truncation_side="left",
|
|
trust_remote_code=trust_remote_code,
|
|
)
|
|
|
|
config = config_cls.from_pretrained(
|
|
model_id, revision=revision, trust_remote_code=trust_remote_code
|
|
)
|
|
config.quantize = quantize
|
|
config.speculator = speculator
|
|
|
|
# Set context windows
|
|
if getattr(config, "sliding_window", None) is not None:
|
|
set_sliding_window(config.sliding_window)
|
|
else:
|
|
config.sliding_window = None
|
|
|
|
torch.distributed.barrier(group=self.process_group)
|
|
|
|
filenames = weight_files(model_id, revision=revision, extension=".safetensors")
|
|
weights = Weights(filenames, device, dtype, process_group=self.process_group)
|
|
if config.quantize in ["gptq", "awq", "marlin"]:
|
|
weights._set_gptq_params(model_id, revision)
|
|
|
|
prefix = ""
|
|
model = model_cls(prefix, config, weights)
|
|
|
|
self.cuda_graphs = {}
|
|
|
|
torch.distributed.barrier(group=self.process_group)
|
|
num_layers, num_kv_heads, head_size = self.get_layer_config(model)
|
|
super().__init__(
|
|
model_id=model_id,
|
|
model=model,
|
|
tokenizer=tokenizer,
|
|
num_layers=num_layers,
|
|
num_kv_heads=num_kv_heads,
|
|
head_size=head_size,
|
|
dtype=dtype,
|
|
device=device,
|
|
rank=rank,
|
|
world_size=world_size,
|
|
sliding_window=config.sliding_window,
|
|
)
|
|
|
|
def get_layer_config(self, model) -> Tuple[int, int, int]:
|
|
return (
|
|
len(model.model.layers),
|
|
model.model.num_key_value_heads,
|
|
model.model.head_size,
|
|
)
|
|
|
|
@property
|
|
def supports_adapter_loading(self) -> bool:
|
|
return True
|
|
|
|
def adapter_target_to_layer(self) -> Dict[str, Tuple[str, torch.Tensor]]:
|
|
layer_weights = {}
|
|
|
|
prefix = "model.layers"
|
|
|
|
# This accounts for VLMs (e.g. LlavaNext, Idefics2)
|
|
# that have a language_model inside of the larger model.
|
|
if hasattr(self.model, "language_model"):
|
|
_model = self.model.language_model
|
|
elif hasattr(self.model, "text_model"):
|
|
_model = self.model.text_model
|
|
else:
|
|
_model = self.model
|
|
|
|
for i, layer in enumerate(_model.model.layers):
|
|
layer_weights[(i, "q_proj")] = (
|
|
f"{prefix}.{i}.self_attn.q_proj",
|
|
layer.self_attn.query_key_value,
|
|
)
|
|
layer_weights[(i, "k_proj")] = (
|
|
f"{prefix}.{i}.self_attn.k_proj",
|
|
layer.self_attn.query_key_value,
|
|
)
|
|
layer_weights[(i, "v_proj")] = (
|
|
f"{prefix}.{i}.self_attn.v_proj",
|
|
layer.self_attn.query_key_value,
|
|
)
|
|
layer_weights[(i, "o_proj")] = (
|
|
f"{prefix}.{i}.self_attn.o_proj",
|
|
layer.self_attn.o_proj,
|
|
)
|
|
|
|
# TODO: this is a hack to avoid the gate_proj for
|
|
# FlashStarcoder2 that doesnt have these layers
|
|
if hasattr(layer.mlp, "gate_up_proj"):
|
|
layer_weights[(i, "gate_proj")] = (
|
|
f"{prefix}.{i}.mlp.gate_proj",
|
|
layer.mlp.gate_up_proj,
|
|
)
|
|
layer_weights[(i, "up_proj")] = (
|
|
f"{prefix}.{i}.mlp.up_proj",
|
|
layer.mlp.gate_up_proj,
|
|
)
|
|
layer_weights[(i, "down_proj")] = (
|
|
f"{prefix}.{i}.mlp.down_proj",
|
|
layer.mlp.down_proj,
|
|
)
|
|
|
|
layer_weights[(0, "lm_head")] = ("lm_head", _model.lm_head)
|
|
return layer_weights
|
|
|
|
@property
|
|
def adapter_layers(self) -> List[str]:
|
|
return ADAPTER_LAYERS
|
|
|
|
@property
|
|
def default_traced_adapter_layers(self) -> List[str]:
|
|
return ["q_proj", "v_proj"]
|
|
|
|
def get_num_layers_for_type(self, layer_type: str) -> int:
|
|
return 1 if layer_type == "lm_head" else len(self.model.model.layers)
|
|
|
|
def is_row_parallel(self, layer_type: str) -> bool:
|
|
return layer_type in ROW_PARALLEL
|
|
|
|
|
|
class FlashMistral(BaseFlashMistral):
|
|
def __init__(
|
|
self,
|
|
model_id: str,
|
|
revision: Optional[str] = None,
|
|
quantize: Optional[str] = None,
|
|
speculator: Optional[str] = None,
|
|
dtype: Optional[torch.dtype] = None,
|
|
trust_remote_code: bool = False,
|
|
):
|
|
super(FlashMistral, self).__init__(
|
|
config_cls=MistralConfig,
|
|
model_cls=FlashMistralForCausalLM,
|
|
model_id=model_id,
|
|
revision=revision,
|
|
quantize=quantize,
|
|
speculator=speculator,
|
|
dtype=dtype,
|
|
trust_remote_code=trust_remote_code,
|
|
)
|