hf_text-generation-inference/load_tests/benchmarks.py

290 lines
9.0 KiB
Python

import argparse
import datetime
import json
import os
import traceback
from typing import Dict, Tuple, List
import GPUtil
import docker
from docker.models.containers import Container
from loguru import logger
import pandas as pd
class InferenceEngineRunner:
def __init__(self, model: str):
self.model = model
def run(self, parameters: list[tuple], gpus: int = 0):
NotImplementedError("This method should be implemented by the subclass")
def stop(self):
NotImplementedError("This method should be implemented by the subclass")
class TGIDockerRunner(InferenceEngineRunner):
def __init__(
self,
model: str,
image: str = "ghcr.io/huggingface/text-generation-inference:latest",
volumes=None,
):
super().__init__(model)
if volumes is None:
volumes = []
self.container = None
self.image = image
self.volumes = volumes
def run(self, parameters: list[tuple], gpus: int = 0):
params = f"--model-id {self.model} --port 8080"
for p in parameters:
params += f" --{p[0]} {str(p[1])}"
logger.info(f"Running TGI with parameters: {params}")
volumes = {}
for v in self.volumes:
volumes[v[0]] = {"bind": v[1], "mode": "rw"}
self.container = run_docker(
self.image,
params,
"Connected",
"ERROR",
volumes=volumes,
gpus=gpus,
ports={"8080/tcp": 8080},
)
def stop(self):
if self.container:
self.container.stop()
class BenchmarkRunner:
def __init__(
self,
image: str = "ghcr.io/huggingface/text-generation-inference-benchmark:latest",
volumes: List[Tuple[str, str]] = None,
):
if volumes is None:
volumes = []
self.container = None
self.image = image
self.volumes = volumes
def run(self, parameters: list[tuple], network_mode):
params = "text-generation-inference-benchmark"
for p in parameters:
params += f" --{p[0]} {str(p[1])}" if p[1] is not None else f" --{p[0]}"
logger.info(
f"Running text-generation-inference-benchmarks with parameters: {params}"
)
volumes = {}
for v in self.volumes:
volumes[v[0]] = {"bind": v[1], "mode": "rw"}
self.container = run_docker(
self.image,
params,
"Benchmark finished",
"Fatal:",
volumes=volumes,
extra_env={
"RUST_LOG": "text_generation_inference_benchmark=info",
"RUST_BACKTRACE": "full",
},
network_mode=network_mode,
)
def stop(self):
if self.container:
self.container.stop()
def run_docker(
image: str,
args: str,
success_sentinel: str,
error_sentinel: str,
ports: Dict[str, int] = None,
volumes=None,
network_mode: str = "bridge",
gpus: int = 0,
extra_env: Dict[str, str] = None,
) -> Container:
if ports is None:
ports = {}
if volumes is None:
volumes = {}
if extra_env is None:
extra_env = {}
client = docker.from_env(timeout=300)
# retrieve the GPU devices from CUDA_VISIBLE_DEVICES
devices = [f"{i}" for i in range(get_num_gpus())][:gpus]
environment = {"HF_TOKEN": os.environ.get("HF_TOKEN")}
environment.update(extra_env)
container = client.containers.run(
image,
args,
detach=True,
device_requests=(
[docker.types.DeviceRequest(device_ids=devices, capabilities=[["gpu"]])]
if gpus > 0
else None
),
volumes=volumes,
shm_size="1g",
ports=ports,
network_mode=network_mode,
environment=environment,
)
for line in container.logs(stream=True):
print(line.decode("utf-8"), end="")
if success_sentinel.encode("utf-8") in line:
break
if error_sentinel.encode("utf-8") in line:
container.stop()
raise Exception(f"Error starting container: {line}")
return container
def get_gpu_names() -> str:
gpus = GPUtil.getGPUs()
if len(gpus) == 0:
return ""
return f'{len(gpus)}x{gpus[0].name if gpus else "No GPU available"}'
def get_gpu_name() -> str:
gpus = GPUtil.getGPUs()
if len(gpus) == 0:
return ""
return gpus[0].name
def get_num_gpus() -> int:
return len(GPUtil.getGPUs())
def build_df(model: str, data_files: dict[str, str]) -> pd.DataFrame:
df = pd.DataFrame()
now = datetime.datetime.now(datetime.timezone.utc)
created_at = now.isoformat() # '2024-10-02T11:53:17.026215+00:00'
# Load the results
for key, filename in data_files.items():
with open(filename, "r") as f:
data = json.load(f)
for result in data["results"]:
entry = result
[config] = pd.json_normalize(result["config"]).to_dict(orient="records")
entry.update(config)
entry["engine"] = data["config"]["meta"]["engine"]
entry["tp"] = data["config"]["meta"]["tp"]
entry["version"] = data["config"]["meta"]["version"]
entry["model"] = model
entry["created_at"] = created_at
del entry["config"]
df = pd.concat([df, pd.DataFrame(entry, index=[0])])
return df
def main(sha, results_file):
results_dir = "results"
# get absolute path
results_dir = os.path.join(os.path.dirname(__file__), results_dir)
logger.info("Starting benchmark")
models = [
("meta-llama/Llama-3.1-8B-Instruct", 1),
# ('meta-llama/Llama-3.1-70B-Instruct', 4),
# ('mistralai/Mixtral-8x7B-Instruct-v0.1', 2),
]
success = True
for model in models:
tgi_runner = TGIDockerRunner(model[0])
# create results directory
model_dir = os.path.join(
results_dir, f'{model[0].replace("/", "_").replace(".", "_")}'
)
os.makedirs(model_dir, exist_ok=True)
runner = BenchmarkRunner(
volumes=[(model_dir, "/opt/text-generation-inference-benchmark/results")]
)
try:
tgi_runner.run([("max-concurrent-requests", 512)], gpus=model[1])
logger.info(f"TGI started for model {model[0]}")
parameters = [
("tokenizer-name", model[0]),
("max-vus", 800),
("url", "http://localhost:8080"),
("duration", "120s"),
("warmup", "30s"),
("benchmark-kind", "rate"),
(
"prompt-options",
"num_tokens=200,max_tokens=220,min_tokens=180,variance=10",
),
(
"decode-options",
"num_tokens=200,max_tokens=220,min_tokens=180,variance=10",
),
(
"extra-meta",
f'"engine=TGI,tp={model[1]},version={sha},gpu={get_gpu_name()}"',
),
("no-console", None),
]
rates = [("rates", f"{r / 10.}") for r in list(range(8, 248, 8))]
parameters.extend(rates)
runner.run(parameters, f"container:{tgi_runner.container.id}")
except Exception as e:
logger.error(f"Error running benchmark for model {model[0]}: {e}")
# print the stack trace
print(traceback.format_exc())
success = False
finally:
tgi_runner.stop()
runner.stop()
if not success:
logger.error("Some benchmarks failed")
exit(1)
df = pd.DataFrame()
# list recursively directories
directories = [
f"{results_dir}/{d}"
for d in os.listdir(results_dir)
if os.path.isdir(f"{results_dir}/{d}")
]
logger.info(f"Found result directories: {directories}")
for directory in directories:
data_files = {}
for filename in os.listdir(directory):
if filename.endswith(".json"):
data_files[filename.split(".")[-2]] = f"{directory}/{filename}"
logger.info(f"Processing directory {directory}")
df = pd.concat([df, build_df(directory.split("/")[-1], data_files)])
df["device"] = get_gpu_name()
df["error_rate"] = (
df["failed_requests"]
/ (df["failed_requests"] + df["successful_requests"])
* 100.0
)
df.to_parquet(results_file)
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument(
"--sha", help="SHA of the commit to add to the results", required=True
)
parser.add_argument(
"--results-file",
help="The file where to store the results, can be a local file or a s3 path",
)
args = parser.parse_args()
if args.results_file is None:
results_file = f"{args.sha}.parquet"
else:
results_file = args.results_file
main(args.sha, results_file)