65 lines
1.8 KiB
Python
65 lines
1.8 KiB
Python
import pytest
|
|
|
|
|
|
@pytest.fixture(scope="module")
|
|
def flash_medusa_handle(launcher):
|
|
with launcher(
|
|
"FasterDecoding/medusa-vicuna-7b-v1.3", num_shard=2, revision="refs/pr/1"
|
|
) as handle:
|
|
yield handle
|
|
|
|
|
|
@pytest.fixture(scope="module")
|
|
async def flash_medusa(flash_medusa_handle):
|
|
await flash_medusa_handle.health()
|
|
return flash_medusa_handle.client
|
|
|
|
|
|
@pytest.mark.asyncio
|
|
async def test_flash_medusa_simple(flash_medusa, response_snapshot):
|
|
response = await flash_medusa.generate(
|
|
"What is Deep Learning?", max_new_tokens=10, decoder_input_details=True
|
|
)
|
|
|
|
assert response.details.generated_tokens == 10
|
|
assert response == response_snapshot
|
|
|
|
|
|
@pytest.mark.asyncio
|
|
async def test_flash_medusa_all_params(flash_medusa, response_snapshot):
|
|
response = await flash_medusa.generate(
|
|
"What is Deep Learning?",
|
|
max_new_tokens=10,
|
|
repetition_penalty=1.2,
|
|
return_full_text=True,
|
|
stop_sequences=["test"],
|
|
temperature=0.5,
|
|
top_p=0.9,
|
|
top_k=10,
|
|
truncate=5,
|
|
typical_p=0.9,
|
|
watermark=True,
|
|
decoder_input_details=True,
|
|
seed=0,
|
|
)
|
|
|
|
assert response.details.generated_tokens == 10
|
|
assert response == response_snapshot
|
|
|
|
|
|
@pytest.mark.asyncio
|
|
async def test_flash_medusa_load(flash_medusa, generate_load, response_snapshot):
|
|
responses = await generate_load(
|
|
flash_medusa, "What is Deep Learning?", max_new_tokens=10, n=4
|
|
)
|
|
|
|
assert len(responses) == 4
|
|
assert all(
|
|
[r.generated_text == responses[0].generated_text for r in responses]
|
|
), f"{[r.generated_text for r in responses]}"
|
|
assert (
|
|
responses[0].generated_text == "\nDeep learning is a subset of machine learning"
|
|
)
|
|
|
|
assert responses == response_snapshot
|