hf_text-generation-inference/backends/trtllm/lib/backend.cpp

147 lines
5.3 KiB
C++

#include <fstream>
#include <fmt/ranges.h>
#include <spdlog/spdlog.h>
#include <nvml.h>
#include "backend.h"
#include "hardware.h"
void huggingface::tgi::backends::InitializeBackend() {
SPDLOG_INFO("Initializing Backend...");
nvmlInit_v2();
initTrtLlmPlugins();
const auto numGpus = huggingface::hardware::cuda::GetNumDevices();
if (numGpus.has_value()) {
SPDLOG_INFO("Detected {:d} Nvidia GPU(s)", numGpus.value());
} else {
SPDLOG_WARN("Failed to detected Nvidia GPU(s) on the system");
}
}
[[nodiscard]]
tle::ExecutorConfig huggingface::tgi::backends::GetExecutorConfig(const json &config, const std::string &workerPath) {
tle::ExecutorConfig execConfig(1);
// Retrieve the compute capabilities to enable some options at runtime
const auto computeCapabilities = huggingface::hardware::cuda::GetCudaComputeCapabilities();
// Single engine (TP = PP = 1) -> using leader mode (no MPI involved)
if (config["/pretrained_config/mapping/world_size"_json_pointer].get<uint8_t>() == 1) {
SPDLOG_INFO("Detected single engine deployment, using leader mode");
execConfig.setParallelConfig(tle::ParallelConfig(
tle::CommunicationType::kMPI,
tle::CommunicationMode::kLEADER,
std::nullopt,
std::nullopt,
std::nullopt
));
} else { // Multiple engines -> using orchestrator mode (MPI involved)
SPDLOG_INFO("Detected sharded engine deployment, using orchestrator mode");
execConfig.setParallelConfig(tle::ParallelConfig(
tle::CommunicationType::kMPI,
tle::CommunicationMode::kORCHESTRATOR,
std::nullopt,
std::nullopt,
tle::OrchestratorConfig(true, workerPath, nullptr, true)
));
}
// Define some configuration variables
execConfig.setKvCacheConfig(tle::KvCacheConfig(true));
execConfig.setEnableChunkedContext(computeCapabilities.isPostAmpere());
return execConfig;
}
tle::SamplingConfig huggingface::tgi::backends::GetSamplingConfig(
uint32_t topK,
float_t topP,
float_t temperature,
float_t repetition_penalty,
float_t frequency_penalty,
uint64_t seed) {
return tle::SamplingConfig(
1, // TGI only use a single beam
topK,
topP,
std::nullopt,
std::nullopt,
std::nullopt,
seed,
temperature,
temperature,
std::nullopt,
repetition_penalty,
std::nullopt,
frequency_penalty
);
}
huggingface::tgi::backends::TensorRtLlmBackend::TensorRtLlmBackend(
const std::filesystem::path &enginesFolder,
const std::filesystem::path &executorWorker
) :
config(json::parse(std::ifstream(enginesFolder / "config.json"))),
executor(
enginesFolder,
tensorrt_llm::executor::ModelType::kDECODER_ONLY,
GetExecutorConfig(config, executorWorker.string()
)) {
SPDLOG_INFO(FMT_STRING("Engine (version={})"), config["/version"_json_pointer].get_ref<const std::string &>());
}
bool huggingface::tgi::backends::TensorRtLlmBackend::IsReady() const {
return executor.canEnqueueRequests();
}
[[nodiscard("Returned number of requests needs to be consumed")]]
size_t huggingface::tgi::backends::TensorRtLlmBackend::NumResponsesReady() const {
return executor.getNumResponsesReady();
}
[[nodiscard("Returned request id needs to be provided back to gather generated tokens")]]
tle::IdType huggingface::tgi::backends::TensorRtLlmBackend::Submit(
const std::vector<tle::TokenIdType> &tokens,
const int32_t topK,
const float_t topP,
const float_t temperature,
const float_t repetition_penalty,
const float_t frequency_penalty,
const uint64_t seed
) {
#ifdef NDEBUG
SPDLOG_DEBUG(
FMT_STRING("Submitting inference over {:d} tokens to the executor ({:d} already in-flight)"),
tokens.size(),
executor.getLatestIterationStats().back().numActiveRequests
);
#else
SPDLOG_DEBUG(
FMT_STRING("Submitting inference [{}] to the executor ({:d} already in-flight)"),
fmt::join(tokens, ", "),
executor.getLatestIterationStats().front().numActiveRequests
);
#endif
const auto maxNumTokens = config["/build_config/max_num_tokens"_json_pointer].get<size_t>();
const auto maxNewTokens = static_cast<int32_t>(std::max(1ul, maxNumTokens - tokens.size()));
const auto sampling = GetSamplingConfig(topK, topP, temperature, repetition_penalty, frequency_penalty, seed);
const auto output = tle::OutputConfig(true, false, false, true, false);
return executor.enqueueRequest(
tle::Request{tokens, maxNewTokens, true, sampling, output});
}
[[nodiscard("Generated tokens result must be used")]]
std::vector<tle::Response> huggingface::tgi::backends::TensorRtLlmBackend::Poll(const tle::IdType requestId) {
SPDLOG_DEBUG(FMT_STRING("Polling status for request {:d}"), requestId);
return executor.awaitResponses(requestId);
}
void huggingface::tgi::backends::TensorRtLlmBackend::Shutdown() {
SPDLOG_INFO("Shutting down executor");
executor.shutdown();
}