217 lines
7.0 KiB
Python
217 lines
7.0 KiB
Python
import torch
|
|
from torch.nn import functional as F
|
|
from text_generation_server.utils.import_utils import SYSTEM
|
|
|
|
if SYSTEM == "rocm":
|
|
try:
|
|
from vllm import _custom_C
|
|
except Exception as e:
|
|
raise ImportError(f"Could not load `vllm._custom_C`. Full error: {e}")
|
|
|
|
|
|
class FastLinear(torch.nn.Module):
|
|
def __init__(
|
|
self,
|
|
weight,
|
|
bias,
|
|
) -> None:
|
|
super().__init__()
|
|
self.weight = torch.nn.Parameter(weight, requires_grad=False)
|
|
if bias is not None:
|
|
self.bias = torch.nn.Parameter(bias, requires_grad=False)
|
|
else:
|
|
self.bias = None
|
|
|
|
@classmethod
|
|
def load(cls, config, prefix: str, weights, bias: bool):
|
|
weight = weights.get_tensor(f"{prefix}.weight")
|
|
if bias:
|
|
bias = weights.get_tensor(f"{prefix}.bias")
|
|
else:
|
|
bias = None
|
|
return cls(weight, bias)
|
|
|
|
def forward(self, input: torch.Tensor) -> torch.Tensor:
|
|
return F.linear(input, self.weight, self.bias)
|
|
|
|
|
|
class FastLinearROCm(torch.nn.Module):
|
|
def __init__(
|
|
self,
|
|
weight,
|
|
bias,
|
|
) -> None:
|
|
super().__init__()
|
|
self.weight = torch.nn.Parameter(weight)
|
|
if bias is not None:
|
|
self.bias = torch.nn.Parameter(bias)
|
|
else:
|
|
self.bias = None
|
|
|
|
@classmethod
|
|
def load(cls, config, prefix: str, weights, bias: bool):
|
|
weight = weights.get_tensor(f"{prefix}.weight")
|
|
if bias:
|
|
bias = weights.get_tensor(f"{prefix}.bias")
|
|
else:
|
|
bias = None
|
|
return cls(weight, bias)
|
|
|
|
def forward(self, inp: torch.Tensor) -> torch.Tensor:
|
|
weight = self.weight
|
|
bias = self.bias
|
|
|
|
if SYSTEM == "rocm" and inp.numel() // inp.shape[-1] == 1:
|
|
batched = False
|
|
inp_shape = inp.shape
|
|
|
|
if inp.dim() == 3:
|
|
inp = inp.view(-1, inp_shape[-1])
|
|
batched = True
|
|
|
|
m, k = weight.shape[0], inp_shape[1]
|
|
out = torch.empty(
|
|
inp_shape[0], weight.shape[0], dtype=inp.dtype, device="cuda"
|
|
)
|
|
if (k == 8192 and (m == 1280 or m == 7168)) or (k == 3584 and m == 8192):
|
|
_custom_C.LLMM1(weight, inp, out, 8)
|
|
elif k <= 8192 and k % 8 == 0 and m % 4 == 0:
|
|
_custom_C.LLMM1(weight, inp, out, 4)
|
|
else:
|
|
out = F.linear(inp, weight)
|
|
|
|
if batched:
|
|
out.view(*inp_shape[:-1], out.shape[-1])
|
|
|
|
if bias is not None:
|
|
out = out + bias
|
|
return out
|
|
return F.linear(inp, self.weight, self.bias)
|
|
|
|
|
|
def get_linear(weight, bias, quantize):
|
|
if quantize is None:
|
|
if SYSTEM == "rocm":
|
|
linear = FastLinearROCm(weight, bias)
|
|
else:
|
|
linear = FastLinear(weight, bias)
|
|
elif quantize == "eetq":
|
|
try:
|
|
from text_generation_server.layers.eetq import EETQLinear
|
|
|
|
linear = EETQLinear(weight, bias)
|
|
except ImportError:
|
|
raise ImportError(
|
|
"Please install EETQ from https://github.com/NetEase-FuXi/EETQ"
|
|
)
|
|
elif quantize == "fp8":
|
|
from text_generation_server.layers.fp8 import Fp8Linear
|
|
|
|
linear = Fp8Linear(weight, bias)
|
|
elif quantize == "bitsandbytes":
|
|
try:
|
|
from text_generation_server.layers.bnb import (
|
|
warn_deprecate_bnb,
|
|
Linear8bitLt,
|
|
)
|
|
except ImportError:
|
|
raise NotImplementedError(
|
|
f"Bitsandbytes is missing install it with `pip install bitsandbytes`."
|
|
)
|
|
warn_deprecate_bnb()
|
|
linear = Linear8bitLt(
|
|
weight,
|
|
bias,
|
|
has_fp16_weights=False,
|
|
threshold=6.0,
|
|
)
|
|
if bias is not None:
|
|
linear.bias = nn.Parameter(bias)
|
|
elif quantize == "bitsandbytes-fp4":
|
|
try:
|
|
from text_generation_server.layers.bnb import Linear4bit
|
|
except ImportError:
|
|
raise NotImplementedError(
|
|
f"Bitsandbytes is missing install it with `pip install bitsandbytes`."
|
|
)
|
|
linear = Linear4bit(
|
|
weight,
|
|
bias,
|
|
quant_type="fp4",
|
|
)
|
|
elif quantize == "bitsandbytes-nf4":
|
|
try:
|
|
from text_generation_server.layers.bnb import Linear4bit
|
|
except ImportError:
|
|
raise NotImplementedError(
|
|
f"Bitsandbytes is missing install it with `pip install bitsandbytes`."
|
|
)
|
|
linear = Linear4bit(
|
|
weight,
|
|
bias,
|
|
quant_type="nf4",
|
|
)
|
|
elif quantize == "gptq":
|
|
try:
|
|
qweight, qzeros, scales, g_idx, bits, groupsize, use_exllama = weight
|
|
except Exception:
|
|
raise NotImplementedError(
|
|
f"The passed weight is not `gptq` compatible, loader needs to be updated."
|
|
)
|
|
|
|
if use_exllama:
|
|
try:
|
|
from text_generation_server.layers.gptq import (
|
|
ExllamaQuantLinear,
|
|
)
|
|
except ImportError:
|
|
raise NotImplementedError(
|
|
f"Exllama gptq kernels are not installed. Install them `cd server/exllama_kernels && python setup.py install && cd ../exllamav2_kernels && python setup.py install`"
|
|
)
|
|
|
|
linear = ExllamaQuantLinear(
|
|
qweight, qzeros, scales, g_idx, bias, bits, groupsize
|
|
)
|
|
else:
|
|
from text_generation_server.layers.gptq.quant_linear import QuantLinear
|
|
|
|
linear = QuantLinear(
|
|
qweight,
|
|
qzeros,
|
|
scales,
|
|
g_idx,
|
|
bias,
|
|
bits,
|
|
groupsize,
|
|
)
|
|
elif quantize == "awq":
|
|
try:
|
|
qweight, qzeros, scales, _, bits, groupsize, _ = weight
|
|
except Exception:
|
|
raise NotImplementedError(
|
|
f"The passed weight is not `awq` compatible, loader needs to be updated."
|
|
)
|
|
if SYSTEM == "rocm":
|
|
raise NotImplementedError(
|
|
"AWQ GEMM kernel can't be used on ROCm systems, please use `--quantize gptq` instead "
|
|
"to use Exllama/GPTQ kernels for AWQ inference."
|
|
)
|
|
try:
|
|
from text_generation_server.layers.awq.quantize.qmodule import WQLinear
|
|
|
|
linear = WQLinear(
|
|
w_bit=bits,
|
|
group_size=groupsize,
|
|
qweight=qweight,
|
|
qzeros=qzeros,
|
|
scales=scales,
|
|
bias=bias is not None,
|
|
)
|
|
except ImportError:
|
|
raise NotImplementedError(
|
|
"You do not seem to have awq installed, either install it (cd server && make install-awq), or try using GPTQ `---quantize gptq` a conversion AWQ->GPTQ will happen on the fly"
|
|
)
|
|
else:
|
|
raise NotImplementedError(f"Quantization `{quantize}` is not implemented yet.")
|
|
return linear
|