hf_text-generation-inference/benchmark/src/main.rs

209 lines
7.1 KiB
Rust

/// Text Generation Inference benchmarking tool
///
/// Inspired by the great Oha app: https://github.com/hatoo/oha
/// and: https://github.com/orhun/rust-tui-template
use clap::Parser;
use std::path::Path;
use text_generation_client::ShardedClient;
use tokenizers::{FromPretrainedParameters, Tokenizer};
use tracing_subscriber::layer::SubscriberExt;
use tracing_subscriber::util::SubscriberInitExt;
use tracing_subscriber::EnvFilter;
/// App Configuration
#[derive(Parser, Debug)]
#[clap(author, version, about, long_about = None)]
struct Args {
/// The name of the tokenizer (as in model_id on the huggingface hub, or local path).
#[clap(short, long, env)]
tokenizer_name: String,
/// The revision to use for the tokenizer if on the hub.
#[clap(default_value = "main", long, env)]
revision: String,
/// The various batch sizes to benchmark for, the idea is to get enough
/// batching to start seeing increased latency, this usually means you're
/// moving from memory bound (usual as BS=1) to compute bound, and this is
/// a sweet spot for the maximum batch size for the model under test
#[clap(short, long)]
batch_size: Option<Vec<u32>>,
/// This is the initial prompt sent to the text-generation-server length
/// in token. Longer prompt will slow down the benchmark. Usually the
/// latency grows somewhat linearly with this for the prefill step.
///
/// Most importantly, the prefill step is usually not the one dominating
/// your runtime, so it's ok to keep it short.
#[clap(default_value = "10", short, long, env)]
sequence_length: u32,
/// This is how many tokens will be generated by the server and averaged out
/// to give the `decode` latency. This is the *critical* number you want to optimize for
/// LLM spend most of their time doing decoding.
///
/// Decode latency is usually quite stable.
#[clap(default_value = "8", short, long, env)]
decode_length: u32,
///How many runs should we average from
#[clap(default_value = "10", short, long, env)]
runs: usize,
/// Number of warmup cycles
#[clap(default_value = "1", short, long, env)]
warmups: usize,
/// The location of the grpc socket. This benchmark tool bypasses the router
/// completely and directly talks to the gRPC processes
#[clap(default_value = "/tmp/text-generation-server-0", short, long, env)]
master_shard_uds_path: String,
/// Generation parameter in case you want to specifically test/debug particular
/// decoding strategies, for full doc refer to the `text-generation-server`
#[clap(long, env)]
temperature: Option<f32>,
/// Generation parameter in case you want to specifically test/debug particular
/// decoding strategies, for full doc refer to the `text-generation-server`
#[clap(long, env)]
top_k: Option<u32>,
/// Generation parameter in case you want to specifically test/debug particular
/// decoding strategies, for full doc refer to the `text-generation-server`
#[clap(long, env)]
top_p: Option<f32>,
/// Generation parameter in case you want to specifically test/debug particular
/// decoding strategies, for full doc refer to the `text-generation-server`
#[clap(long, env)]
typical_p: Option<f32>,
/// Generation parameter in case you want to specifically test/debug particular
/// decoding strategies, for full doc refer to the `text-generation-server`
#[clap(long, env)]
repetition_penalty: Option<f32>,
/// Generation parameter in case you want to specifically test/debug particular
/// decoding strategies, for full doc refer to the `text-generation-server`
#[clap(long, env)]
watermark: bool,
/// Generation parameter in case you want to specifically test/debug particular
/// decoding strategies, for full doc refer to the `text-generation-server`
#[clap(long, env)]
do_sample: bool,
}
fn main() -> Result<(), Box<dyn std::error::Error>> {
init_logging();
// Get args
let args = Args::parse();
// Pattern match configuration
let Args {
tokenizer_name,
revision,
batch_size,
sequence_length,
decode_length,
runs,
warmups,
temperature,
top_k,
top_p,
typical_p,
repetition_penalty,
watermark,
do_sample,
master_shard_uds_path,
} = args;
let batch_size = batch_size.unwrap_or(vec![1, 2, 4, 8, 16, 32]);
// Tokenizer instance
// This will only be used to validate payloads
tracing::info!("Loading tokenizer");
let local_path = Path::new(&tokenizer_name);
let tokenizer =
if local_path.exists() && local_path.is_dir() && local_path.join("tokenizer.json").exists()
{
// Load local tokenizer
tracing::info!("Found local tokenizer");
Tokenizer::from_file(local_path.join("tokenizer.json")).unwrap()
} else {
tracing::info!("Downloading tokenizer");
// Parse Huggingface hub token
let auth_token = std::env::var("HUGGING_FACE_HUB_TOKEN").ok();
// Download and instantiate tokenizer
// We need to download it outside of the Tokio runtime
let params = FromPretrainedParameters {
revision,
auth_token,
..Default::default()
};
Tokenizer::from_pretrained(tokenizer_name.clone(), Some(params)).unwrap()
};
tracing::info!("Tokenizer loaded");
// Launch Tokio runtime
tokio::runtime::Builder::new_multi_thread()
.enable_all()
.build()
.unwrap()
.block_on(async {
// Instantiate sharded client from the master unix socket
tracing::info!("Connect to model server");
let mut sharded_client = ShardedClient::connect_uds(master_shard_uds_path)
.await
.expect("Could not connect to server");
// Clear the cache; useful if the webserver rebooted
sharded_client
.clear_cache(None)
.await
.expect("Unable to clear cache");
tracing::info!("Connected");
// Run app
text_generation_benchmark::run(
tokenizer_name,
tokenizer,
batch_size,
sequence_length,
decode_length,
runs,
warmups,
temperature,
top_k,
top_p,
typical_p,
repetition_penalty,
watermark,
do_sample,
sharded_client,
)
.await
.unwrap();
});
Ok(())
}
/// Init logging using LOG_LEVEL
fn init_logging() {
// STDOUT/STDERR layer
let fmt_layer = tracing_subscriber::fmt::layer()
.with_file(true)
.with_line_number(true);
// Filter events with LOG_LEVEL
let env_filter =
EnvFilter::try_from_env("LOG_LEVEL").unwrap_or_else(|_| EnvFilter::new("info"));
tracing_subscriber::registry()
.with(env_filter)
.with(fmt_layer)
.init();
}