hf_text-generation-inference/server/marlin/marlin_kernels/sparse/common/mma.h

192 lines
7.9 KiB
C++
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/*
* Copyright (C) 2024 Roberto Lopez Castro (roberto.lopez.castro@udc.es). All
* Rights Reserved.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#pragma once
#include "base.h"
#include <cudaTypedefs.h>
namespace marlin_24 {
// On CUDA earlier than 12.5, the ordered_metadata version of this instruction
// is not supported. On later versions of CUDA the version without ordered
// metadata results in the following warning:
// | Advisory: Modifier .sp::ordered_metadata should be used on instruction
// | mma instead of modifier .sp as it is expected to have substantially
// | reduced performance on some future architectures
#if defined CUDA_VERSION && CUDA_VERSION >= 12050
#define MMA_SP_INST \
"mma.sp::ordered_metadata.sync.aligned.m16n8k32.row.col.f32.f16.f16.f32 "
#else
#define MMA_SP_INST "mma.sp.sync.aligned.m16n8k32.row.col.f32.f16.f16.f32 "
#endif
// m16n8k32 sparse tensor core mma instruction with fp16 inputs and fp32
// output/accumulation.
__device__ inline void mma_sp(const FragB& a_frag0, const FragB& a_frag1,
const FragA& frag_b, FragC& frag_c, FragM& frag_m,
const int psel) {
const uint32_t* a0 = reinterpret_cast<const uint32_t*>(&a_frag0);
const uint32_t* a1 = reinterpret_cast<const uint32_t*>(&a_frag1);
const uint32_t* b = reinterpret_cast<const uint32_t*>(&frag_b);
const uint32_t* e = reinterpret_cast<const uint32_t*>(&frag_m);
float* c = reinterpret_cast<float*>(&frag_c);
if (psel == 0) {
asm volatile(MMA_SP_INST
"{%0, %1, %2, %3}, {%4, %5, %6, %7}, {%8, %9, %10,%11}, "
"{%12,%13,%14,%15}, %16, 0x0;\n"
: "=f"(c[0]), "=f"(c[1]), "=f"(c[2]), "=f"(c[3])
: "r"(a0[0]), "r"(a1[0]), "r"(a0[1]), "r"(a1[1]), "r"(b[0]),
"r"(b[2]), "r"(b[4]), "r"(b[6]), "f"(c[0]), "f"(c[1]),
"f"(c[2]), "f"(c[3]), "r"(e[0]));
asm volatile(MMA_SP_INST
"{%0, %1, %2, %3}, {%4, %5, %6, %7}, {%8, %9, %10,%11}, "
"{%12,%13,%14,%15}, %16, 0x0;\n"
: "=f"(c[4]), "=f"(c[5]), "=f"(c[6]), "=f"(c[7])
: "r"(a0[0]), "r"(a1[0]), "r"(a0[1]), "r"(a1[1]), "r"(b[1]),
"r"(b[3]), "r"(b[5]), "r"(b[7]), "f"(c[4]), "f"(c[5]),
"f"(c[6]), "f"(c[7]), "r"(e[0]));
} else {
asm volatile(MMA_SP_INST
"{%0, %1, %2, %3}, {%4, %5, %6, %7}, {%8, %9, %10,%11}, "
"{%12,%13,%14,%15}, %16, 0x1;\n"
: "=f"(c[0]), "=f"(c[1]), "=f"(c[2]), "=f"(c[3])
: "r"(a0[0]), "r"(a1[0]), "r"(a0[1]), "r"(a1[1]), "r"(b[0]),
"r"(b[2]), "r"(b[4]), "r"(b[6]), "f"(c[0]), "f"(c[1]),
"f"(c[2]), "f"(c[3]), "r"(e[0]));
asm volatile(MMA_SP_INST
"{%0, %1, %2, %3}, {%4, %5, %6, %7}, {%8, %9, %10,%11}, "
"{%12,%13,%14,%15}, %16, 0x1;\n"
: "=f"(c[4]), "=f"(c[5]), "=f"(c[6]), "=f"(c[7])
: "r"(a0[0]), "r"(a1[0]), "r"(a0[1]), "r"(a1[1]), "r"(b[1]),
"r"(b[3]), "r"(b[5]), "r"(b[7]), "f"(c[4]), "f"(c[5]),
"f"(c[6]), "f"(c[7]), "r"(e[0]));
}
}
// Lookup-table based 3-input logical operation; explicitly used for
// dequantization as the compiler does not seem to automatically recognize it in
// all cases.
template <int lut>
__device__ inline int lop3(int a, int b, int c) {
int res;
asm volatile("lop3.b32 %0, %1, %2, %3, %4;\n"
: "=r"(res)
: "r"(a), "r"(b), "r"(c), "n"(lut));
return res;
}
__device__ __forceinline__ uint2 to_half4(float c0, float c1, float c2,
float c3) {
uint2 r;
asm("{\n\t"
".reg .f16 a, b, c, d; \n\t"
"cvt.rn.f16.f32 a, %2; \n\t"
"cvt.rn.f16.f32 b, %3; \n\t"
"cvt.rn.f16.f32 c, %4; \n\t"
"cvt.rn.f16.f32 d, %5; \n\t"
"mov.b32 %0, {a, b}; \n\t"
"mov.b32 %1, {c, d}; \n\t"
"}"
: "=r"(r.x), "=r"(r.y)
: "f"(c0), "f"(c1), "f"(c2), "f"(c3));
return r;
}
// Constructs destination register by taking bytes from 2 sources (based on
// mask)
template <int start_byte, int mask>
__device__ inline uint32_t prmt(uint32_t a) {
uint32_t res;
asm volatile("prmt.b32 %0, %1, %2, %3;\n"
: "=r"(res)
: "r"(a), "n"(start_byte), "n"(mask));
return res;
}
// Efficiently dequantize an int32 value into a full B-fragment of 4 fp16
// values. We mostly follow the strategy in the link below, with some small
// changes:
// https://github.com/NVIDIA/FasterTransformer/blob/main/src/fastertransformer/cutlass_extensions/include/cutlass_extensions/interleaved_numeric_conversion.h
__device__ inline FragB dequant_4bit(int q) {
const int LO = 0x000f000f;
const int HI = 0x00f000f0;
const int EX = 0x64006400;
// Guarantee that the `(a & b) | c` operations are LOP3s.
int lo = lop3<(0xf0 & 0xcc) | 0xaa>(q, LO, EX);
int hi = lop3<(0xf0 & 0xcc) | 0xaa>(q, HI, EX);
// We want signed int4 outputs, hence we fuse the `-8` symmetric zero point
// directly into `SUB` and `ADD`.
const int SUB = 0x64086408;
const int MUL = 0x2c002c00;
const int ADD = 0xd480d480;
FragB frag_b;
frag_b[0] = __hsub2(*reinterpret_cast<half2*>(&lo),
*reinterpret_cast<const half2*>(&SUB));
frag_b[1] = __hfma2(*reinterpret_cast<half2*>(&hi),
*reinterpret_cast<const half2*>(&MUL),
*reinterpret_cast<const half2*>(&ADD));
return frag_b;
}
// Efficiently dequantize an int32 value into a full B-fragment of 4 fp16
// values. We mostly follow the strategy in the link below, with some small
// changes:
// https://github.com/NVIDIA/FasterTransformer/blob/main/src/fastertransformer/cutlass_extensions/include/cutlass_extensions/interleaved_numeric_conversion.h
__device__ inline FragB dequant_8bit(int q) {
static constexpr uint32_t mask_for_elt_01 = 0x5250;
static constexpr uint32_t mask_for_elt_23 = 0x5351;
static constexpr uint32_t start_byte_for_fp16 = 0x64646464;
uint32_t lo = prmt<start_byte_for_fp16, mask_for_elt_01>(q);
uint32_t hi = prmt<start_byte_for_fp16, mask_for_elt_23>(q);
static constexpr uint32_t I8s_TO_F16s_MAGIC_NUM = 0x64806480;
FragB frag_b;
frag_b[0] = __hsub2(*reinterpret_cast<half2*>(&lo),
*reinterpret_cast<const half2*>(&I8s_TO_F16s_MAGIC_NUM));
frag_b[1] = __hsub2(*reinterpret_cast<half2*>(&hi),
*reinterpret_cast<const half2*>(&I8s_TO_F16s_MAGIC_NUM));
return frag_b;
}
// Multiply dequantized values by the corresponding quantization scale; used
// only for grouped quantization.
__device__ inline void scale(FragB& frag_b, FragS& frag_s, int i) {
half2 s = __half2half2(reinterpret_cast<__half*>(&frag_s)[i]);
frag_b[0] = __hmul2(frag_b[0], s);
frag_b[1] = __hmul2(frag_b[1], s);
}
__device__ inline void scale_floats(float* c0, float* c1, float* c2, float* c3,
FragS& s0, float* c4, float* c5, float* c6,
float* c7, FragS& s1) {
*c0 = __fmul_rn(*c0, __half2float(s0[0].x));
*c1 = __fmul_rn(*c1, __half2float(s0[0].y));
*c2 = __fmul_rn(*c2, __half2float(s0[1].x));
*c3 = __fmul_rn(*c3, __half2float(s0[1].y));
*c4 = __fmul_rn(*c4, __half2float(s1[0].x));
*c5 = __fmul_rn(*c5, __half2float(s1[0].y));
*c6 = __fmul_rn(*c6, __half2float(s1[1].x));
*c7 = __fmul_rn(*c7, __half2float(s1[1].y));
}
} // namespace marlin_24