hf_text-generation-inference/server/text_generation_server/utils/weights.py

590 lines
22 KiB
Python

from dataclasses import dataclass, field
import os
from pathlib import Path
from typing import List, Dict, Optional, Set, Tuple, Union
from safetensors import safe_open, SafetensorError
import torch
from loguru import logger
from huggingface_hub import hf_hub_download
import json
from text_generation_server.utils.log import log_once
class Weights:
def __init__(
self,
filenames: List[Path],
device,
dtype,
process_group,
aliases: Optional[Dict[str, List[str]]] = None,
prefix: Optional[str] = None,
):
routing = {}
for filename in filenames:
with safe_open(filename, framework="pytorch") as f:
for k in f.keys():
if k in routing:
raise RuntimeError(
f"Key {k} was found in multiple files: {filename} and {routing[k]}"
)
routing[k] = filename
if aliases is None:
aliases = {}
self.aliases = aliases
self.routing = routing
self.device = device
self.dtype = dtype
self.process_group = process_group
self.prefix = prefix
self._handles = {}
def _get_handle(self, filename):
if filename not in self._handles:
f = safe_open(filename, framework="pytorch")
self._handles[filename] = f
return self._handles[filename]
def get_filename(self, tensor_name: str) -> (str, str):
names = [tensor_name]
if self.prefix is not None:
prefixed = f"{self.prefix}.{tensor_name}"
names.append(prefixed)
for name in names:
filename = self.routing.get(name, None)
if filename is not None:
return str(filename), name
aliases = self.aliases.get(name, [])
for alias in aliases:
filename = self.routing.get(alias, None)
if filename is not None:
return str(filename), alias
raise RuntimeError(f"weight {tensor_name} does not exist")
def _get_slice(self, tensor_name: str):
filename, tensor_name = self.get_filename(tensor_name)
f = self._get_handle(filename)
slice_ = f.get_slice(tensor_name)
return slice_
def get_shape(self, tensor_name: str):
return self._get_slice(tensor_name).get_shape()
def get_tensor(self, tensor_name: str, to_device=True):
filename, tensor_name = self.get_filename(tensor_name)
f = self._get_handle(filename)
tensor = f.get_tensor(tensor_name)
# Special case for gptq which shouldn't convert
# u4 which are disguised as int32. Exl2 uses int16
# as well.
if tensor.dtype not in [torch.int16, torch.int32, torch.int64]:
tensor = tensor.to(dtype=self.dtype)
if to_device:
tensor = tensor.to(device=self.device)
return tensor
def get_partial_sharded(self, tensor_name: str, dim: int):
filename, tensor_name = self.get_filename(tensor_name)
f = self._get_handle(filename)
slice_ = f.get_slice(tensor_name)
world_size = self.process_group.size()
rank = self.process_group.rank()
size = slice_.get_shape()[dim]
block_size = (size + world_size - 1) // world_size
start = rank * block_size
stop = (rank + 1) * block_size
if dim == 0:
tensor = slice_[start:stop]
elif dim == 1:
tensor = slice_[:, start:stop]
else:
raise NotImplementedError("Let's make that generic when needed")
# Special case for gptq which shouldn't convert
# u4 which are disguised as int32. exl2 uses int16.
if tensor.dtype not in (torch.int16, torch.int32):
tensor = tensor.to(dtype=self.dtype)
tensor = tensor.to(device=self.device)
return tensor
def get_sharded(self, tensor_name: str, dim: int):
filename, tensor_name = self.get_filename(tensor_name)
f = self._get_handle(filename)
slice_ = f.get_slice(tensor_name)
world_size = self.process_group.size()
size = slice_.get_shape()[dim]
assert (
size % world_size == 0
), f"The choosen size {size} is not compatible with sharding on {world_size} shards"
return self.get_partial_sharded(tensor_name, dim)
def _get_qweight(self, name: str, blocks: int):
slice_ = self._get_slice(name)
total_size = slice_.get_shape()[1]
assert (
total_size % blocks == 0
), f"Prepacked quantized matrix is not divisible by {blocks}"
single_size = total_size // blocks
world_size = self.process_group.size()
rank = self.process_group.rank()
assert (
single_size % world_size == 0
), f"Prepacked quantized matrix cannot be sharded across {world_size} shards"
block_size = single_size // world_size
start = rank * block_size
stop = (rank + 1) * block_size
weights = []
for block in range(blocks):
weights.append(
slice_[:, start + block * single_size : stop + block * single_size]
)
weight = torch.cat(weights, dim=1)
weight = weight.to(device=self.device)
return weight
def get_weights_col_packed_qkv(self, prefix: str, quantize: str):
return self.get_weights_col_packed(prefix, quantize, 3)
def get_weights_col_packed_gate_up(self, prefix: str, quantize: str):
return self.get_weights_col_packed(prefix, quantize, 2)
def get_weights_col_packed(self, prefix: str, quantize: str, blocks: int):
"""
Highly specific when the underlying tensor is a simple cat of Q,K,V instead of being
already alternating Q,K,V within the main tensor
"""
if quantize in ["gptq", "awq"]:
from text_generation_server.layers.gptq import GPTQWeight
try:
qweight = self._get_qweight(f"{prefix}.qweight", blocks)
except RuntimeError:
raise RuntimeError(
f"Cannot load `{quantize}` weight, make sure the model is already quantized."
)
bits, groupsize, _, quant_method = self._get_gptq_params()
qzeros = self._get_qweight(f"{prefix}.qzeros", blocks)
scales = self._get_qweight(f"{prefix}.scales", blocks)
scales = scales.to(dtype=self.dtype)
if quantize == "gptq" and quant_method == "gptq":
g_idx = self.get_tensor(f"{prefix}.g_idx")
elif quantize == "gptq" and quant_method == "awq":
log_once(
logger.info, "Converting AWQ model to Exllama/GPTQ packing format."
)
from text_generation_server.layers.awq.conversion_utils import (
fast_awq_to_gptq,
)
qweight, qzeros = fast_awq_to_gptq(qweight, qzeros)
g_idx = (
torch.arange(qweight.shape[0] * (32 // bits), device=qweight.device)
// groupsize
).to(dtype=torch.int32)
else:
g_idx = None
weight = GPTQWeight(
qweight=qweight,
qzeros=qzeros,
scales=scales,
g_idx=g_idx,
bits=bits,
groupsize=groupsize,
use_exllama=False,
)
elif quantize == "marlin":
from text_generation_server.layers.marlin import MarlinWeight
B = self._get_qweight(f"{prefix}.B", blocks)
s = self._get_qweight(f"{prefix}.s", blocks)
weight = MarlinWeight(B=B, s=s)
else:
slice_ = self._get_slice(f"{prefix}.weight")
total_size = slice_.get_shape()[0]
assert total_size % blocks == 0, f"Prepacked is not divisible by {blocks}"
single_size = total_size // blocks
world_size = self.process_group.size()
rank = self.process_group.rank()
assert (
single_size % world_size == 0
), f"Prepacked qkv cannot be sharded across {world_size} shards"
block_size = single_size // world_size
start = rank * block_size
stop = (rank + 1) * block_size
tensors = []
for i in range(blocks):
tensor = slice_[start + i * single_size : stop + i * single_size]
tensors.append(tensor)
weight = torch.cat(tensors, dim=0)
weight = weight.to(device=self.device)
weight = weight.to(dtype=self.dtype)
return weight
def get_weights_col(self, prefix: str, quantize: str):
if quantize == "exl2":
from text_generation_server.layers.exl2 import Exl2Weight
try:
q_weight = self.get_tensor(f"{prefix}.q_weight")
except RuntimeError:
raise RuntimeError(
f"Cannot load `exl2`-quantized weight, make sure the model is already quantized."
)
q_scale = self.get_tensor(f"{prefix}.q_scale")
q_invperm = self.get_tensor(f"{prefix}.q_invperm")
q_scale_max = self.get_tensor(f"{prefix}.q_scale_max")
q_groups = self.get_tensor(f"{prefix}.q_groups")
return Exl2Weight(
q_weight=q_weight,
q_scale=q_scale,
q_invperm=q_invperm,
q_scale_max=q_scale_max,
q_groups=q_groups,
)
return self.get_multi_weights_col([prefix], quantize, 0)
def get_multi_weights_col(self, prefixes: List[str], quantize: str, dim: int):
if quantize == "exl2":
raise ValueError("get_multi_weights_col is not supported for exl2")
elif quantize in ["gptq", "awq"]:
from text_generation_server.layers.gptq import GPTQWeight
try:
qweight = torch.cat(
[self.get_sharded(f"{p}.qweight", dim=1) for p in prefixes], dim=1
)
except RuntimeError:
raise RuntimeError(
f"Cannot load `{quantize}` weight, make sure the model is already quantized"
)
qzeros = torch.cat(
[self.get_sharded(f"{p}.qzeros", dim=1) for p in prefixes], dim=1
)
scales = torch.cat(
[self.get_sharded(f"{p}.scales", dim=1) for p in prefixes], dim=1
)
bits, groupsize, desc_act, quant_method = self._get_gptq_params()
from text_generation_server.layers.gptq import HAS_EXLLAMA
use_exllama = (
bits == 4 and HAS_EXLLAMA and quantize == "gptq" and not desc_act
)
if quantize == "gptq" and quant_method == "gptq":
w = [self.get_tensor(f"{p}.g_idx") for p in prefixes]
for w2 in w[1:]:
torch.testing.assert_close(w2, w[0])
g_idx = w[0]
elif quantize == "gptq" and quant_method == "awq":
log_once(
logger.info, "Converting AWQ model to Exllama/GPTQ packing format."
)
from text_generation_server.layers.awq.conversion_utils import (
fast_awq_to_gptq,
)
qweight, qzeros = fast_awq_to_gptq(qweight, qzeros)
if use_exllama:
g_idx = None
else:
g_idx = (
torch.arange(
qweight.shape[0] * (32 // bits), device=qweight.device
)
// groupsize
).to(dtype=torch.int32)
else:
g_idx = None
weight = GPTQWeight(
qweight=qweight,
qzeros=qzeros,
scales=scales,
g_idx=g_idx,
bits=bits,
groupsize=groupsize,
use_exllama=use_exllama,
)
elif quantize == "marlin":
from text_generation_server.layers.marlin import MarlinWeight
try:
B = torch.cat(
[self.get_sharded(f"{p}.B", dim=1) for p in prefixes], dim=1
)
except RuntimeError:
raise RuntimeError(
f"Cannot load `{quantize}` weight, make sure the model is already quantized"
)
s = torch.cat([self.get_sharded(f"{p}.s", dim=1) for p in prefixes], dim=1)
weight = MarlinWeight(B=B, s=s)
else:
w = [self.get_sharded(f"{p}.weight", dim=0) for p in prefixes]
weight = torch.cat(w, dim=dim)
return weight
def get_tensor_shard(self, var, dim):
world_size = self.process_group.size()
rank = self.process_group.rank()
block_size = var.size()[dim] // world_size
start = rank * block_size
stop = (rank + 1) * block_size
if dim == 0:
tensor = var[start:stop]
elif dim == 1:
tensor = var[:, start:stop]
else:
raise NotImplementedError("Let's make that generic when needed")
tensor = tensor.to(dtype=self.dtype)
tensor = tensor.to(device=self.device)
return tensor
def get_multi_weights_row(self, prefix: str, quantize: str):
if quantize == "exl2":
from text_generation_server.layers.exl2 import Exl2Weight
try:
q_weight = self.get_tensor(f"{prefix}.q_weight")
except RuntimeError:
raise RuntimeError(
f"Cannot load `exl2`-quantized weight, make sure the model is already quantized."
)
q_scale = self.get_tensor(f"{prefix}.q_scale")
q_invperm = self.get_tensor(f"{prefix}.q_invperm")
q_scale_max = self.get_tensor(f"{prefix}.q_scale_max")
q_groups = self.get_tensor(f"{prefix}.q_groups")
return Exl2Weight(
q_weight=q_weight,
q_scale=q_scale,
q_invperm=q_invperm,
q_scale_max=q_scale_max,
q_groups=q_groups,
)
elif quantize == "gptq":
use_exllama = True
bits, groupsize, desc_act, quant_method = self._get_gptq_params()
if bits != 4:
use_exllama = False
if desc_act:
log_once(logger.warning, "Disabling exllama because desc_act=True")
use_exllama = False
try:
qweight = self.get_sharded(f"{prefix}.qweight", dim=0)
except RuntimeError:
raise RuntimeError(
"Cannot load `gptq` weight, make sure the model is already quantized, or quantize it with `text-generation-server quantize ORIGINAL_MODEL_ID NEW_MODEL_ID`"
)
if quant_method == "gptq":
g_idx = self.get_sharded(f"{prefix}.g_idx", dim=0)
elif quant_method == "awq":
g_idx = None
if self.process_group.size() > 1:
if g_idx is not None:
if (
not torch.equal(
g_idx.cpu(),
torch.tensor(
[i // groupsize for i in range(g_idx.shape[0])],
dtype=torch.int32,
),
)
and not (g_idx == 0).all()
):
# Exllama implementation does not support row tensor parallelism with act-order, as
# it would require to reorder input activations that are split unto several GPUs
use_exllama = False
from text_generation_server.layers.gptq import (
HAS_EXLLAMA,
CAN_EXLLAMA,
GPTQWeight,
)
if use_exllama:
if not HAS_EXLLAMA:
if CAN_EXLLAMA:
log_once(
logger.warning,
"Exllama GPTQ cuda kernels (which are faster) could have been used, but are not currently installed, try using BUILD_EXTENSIONS=True",
)
use_exllama = False
else:
log_once(logger.info, f"Using exllama kernels v{HAS_EXLLAMA}")
if use_exllama and groupsize != -1:
qzeros = self.get_sharded(f"{prefix}.qzeros", dim=0)
scales = self.get_sharded(f"{prefix}.scales", dim=0)
else:
qzeros = self.get_tensor(f"{prefix}.qzeros")
scales = self.get_tensor(f"{prefix}.scales")
if use_exllama and g_idx is not None:
g_idx = g_idx - g_idx[0]
if quant_method == "awq":
log_once(
logger.info, "Converting AWQ model to Exllama/GPTQ packing format."
)
from text_generation_server.layers.awq.conversion_utils import (
fast_awq_to_gptq,
)
qweight, qzeros = fast_awq_to_gptq(qweight, qzeros)
if use_exllama:
g_idx = None
else:
g_idx = (
torch.arange(
qweight.shape[0] * (32 // bits), device=qweight.device
)
// groupsize
).to(dtype=torch.int32)
weight = GPTQWeight(
qweight=qweight,
qzeros=qzeros,
scales=scales,
g_idx=g_idx,
bits=bits,
groupsize=groupsize,
use_exllama=use_exllama,
)
elif quantize == "awq":
from text_generation_server.layers.gptq import GPTQWeight
bits, groupsize, _, _ = self._get_gptq_params()
try:
qweight = self.get_sharded(f"{prefix}.qweight", dim=0)
except RuntimeError:
raise RuntimeError(
"Cannot load `awq` weight, make sure the model is already quantized"
)
qzeros = self.get_sharded(f"{prefix}.qzeros", dim=0)
scales = self.get_sharded(f"{prefix}.scales", dim=0)
g_idx = None
use_exllama = False
weight = GPTQWeight(
qweight=qweight,
qzeros=qzeros,
scales=scales,
g_idx=g_idx,
bits=bits,
groupsize=groupsize,
use_exllama=use_exllama,
)
elif quantize == "marlin":
from text_generation_server.layers.marlin import MarlinWeight
try:
B = self.get_sharded(f"{prefix}.B", dim=0)
except RuntimeError:
raise RuntimeError(
"Cannot load `marlin` weight, make sure the model is already quantized, or quantize it with `text-generation-server quantize ORIGINAL_MODEL_ID NEW_MODEL_ID`"
)
s = self.get_sharded(f"{prefix}.s", dim=0)
weight = MarlinWeight(B=B, s=s)
else:
weight = self.get_sharded(f"{prefix}.weight", dim=1)
return weight
def _get_gptq_params(self) -> Tuple[int, int, int, str]:
try:
bits = self.get_tensor("gptq_bits").item()
groupsize = self.get_tensor("gptq_groupsize").item()
desc_act = False
quant_method = "gptq"
except (SafetensorError, RuntimeError) as e:
try:
bits = self.gptq_bits
groupsize = self.gptq_groupsize
desc_act = getattr(self, "gptq_desc_act", False)
quant_method = getattr(self, "quant_method", "gptq")
except Exception:
raise e
return bits, groupsize, desc_act, quant_method
def _set_gptq_params(self, model_id, revision):
filename = "config.json"
try:
if os.path.exists(os.path.join(model_id, filename)):
filename = os.path.join(model_id, filename)
else:
filename = hf_hub_download(
model_id, filename=filename, revision=revision
)
with open(filename, "r") as f:
data = json.load(f)
self.gptq_bits = data["quantization_config"]["bits"]
self.gptq_groupsize = data["quantization_config"]["group_size"]
# Order is important here, desc_act is missing on some real models
self.quant_method = data["quantization_config"]["quant_method"]
self.gptq_desc_act = data["quantization_config"]["desc_act"]
except Exception:
filename = "quantize_config.json"
try:
if os.path.exists(os.path.join(model_id, filename)):
filename = os.path.join(model_id, filename)
else:
filename = hf_hub_download(
model_id, filename=filename, revision=revision
)
with open(filename, "r") as f:
data = json.load(f)
self.gptq_bits = data["bits"]
self.gptq_groupsize = data["group_size"]
self.gptq_desc_act = data["desc_act"]
if "version" in data and data["version"] == "GEMM":
self.quant_method = "awq"
except Exception:
filename = "quant_config.json"
try:
if os.path.exists(os.path.join(model_id, filename)):
filename = os.path.join(model_id, filename)
else:
filename = hf_hub_download(
model_id, filename=filename, revision=revision
)
with open(filename, "r") as f:
data = json.load(f)
self.gptq_bits = data["w_bit"]
self.gptq_groupsize = data["q_group_size"]
self.gptq_desc_act = data["desc_act"]
if "version" in data and data["version"] == "GEMM":
self.quant_method = "awq"
except Exception:
pass