hf_text-generation-inference/server/text_generation_server/models/idefics_causal_lm.py

871 lines
32 KiB
Python

import torch
import torch
import time
from dataclasses import dataclass
from opentelemetry import trace
from transformers import (
AutoProcessor,
AutoTokenizer,
PreTrainedTokenizerBase,
ProcessorMixin,
)
from typing import Optional, Tuple, List, Type, Dict
from text_generation_server.models import Model
from text_generation_server.models.types import (
Batch,
Tokens,
Generation,
GeneratedText,
)
from text_generation_server.pb import generate_pb2
from text_generation_server.utils import NextTokenChooser, StoppingCriteria, Sampling
from text_generation_server.models.vlm_causal_lm import split
import re
IMAGES = re.compile(r"!\[[^\]]*\]\((.*?)\s*(\"(?:.*[^\"])\")?\s*\)")
tracer = trace.get_tracer(__name__)
@dataclass
class IdeficsCausalLMBatch(Batch):
batch_id: int
requests: List[generate_pb2.Request]
requests_idx_mapping: Dict[int, int]
# Decoder values
input_ids: torch.Tensor
attention_mask: torch.Tensor
position_ids: torch.Tensor
pixel_values: Optional[torch.Tensor]
image_hidden_states: Optional[torch.Tensor]
image_attention_mask: Optional[torch.Tensor]
past_key_values: Optional[List[Tuple]]
# All tokens
all_input_ids: List[torch.Tensor]
# Lengths of all generations present in the batch
input_lengths: List[int]
prefix_offsets: List[int]
read_offsets: List[int]
# Generation helpers
next_token_choosers: List[NextTokenChooser]
stopping_criterias: List[StoppingCriteria]
# Metadata used for padding
max_input_length: int
padding_right_offset: int
# Maximum number of tokens this batch will grow to
max_tokens: int
# Past metadata
keys_head_dim_last: bool = True
def to_pb(self) -> generate_pb2.CachedBatch:
return generate_pb2.CachedBatch(
id=self.batch_id,
request_ids=[r.id for r in self.requests],
size=len(self),
max_tokens=self.max_tokens,
)
@classmethod
def from_pb(
cls,
pb: generate_pb2.Batch,
tokenizer: PreTrainedTokenizerBase,
dtype: torch.dtype,
device: torch.device,
) -> "IdeficsCausalLMBatch":
raise NotImplementedError
@classmethod
def from_pb_processor(
cls,
pb: generate_pb2.Batch,
tokenizer: PreTrainedTokenizerBase,
processor: ProcessorMixin, # Hack
config,
dtype: torch.dtype,
device: torch.device,
) -> "IdeficsCausalLMBatch":
inputs = []
next_token_choosers = []
stopping_criterias = []
prefix_offsets = []
read_offsets = []
requests_idx_mapping = {}
# Parse batch
max_truncation = 0
padding_right_offset = 0
max_decode_tokens = 0
for i, r in enumerate(pb.requests):
requests_idx_mapping[r.id] = i
inputs.append(r.inputs)
next_token_choosers.append(
NextTokenChooser.from_pb(r.parameters, device, tokenizer)
)
stopping_criteria = StoppingCriteria.from_pb(
r.stopping_parameters, tokenizer
)
stopping_criterias.append(stopping_criteria)
max_truncation = max(max_truncation, r.truncate)
max_decode_tokens += stopping_criteria.max_new_tokens
padding_right_offset = max(
padding_right_offset, stopping_criteria.max_new_tokens
)
# TODO Check impact on idefics
prompts = []
for inp in inputs:
# Each input is encoded into a list, where each element of this input list is either a string or a URL
prompt = []
for chunk in split(inp):
prompt.append(chunk["content"])
prompts.append(prompt)
# The processor replaces the call to tokenizer, and
# a/ takes care of fetching images from the URL
# b/ generate the correct input_ids, attention_mask, pixel_values, image_attention_mask to feed to the model
tokenized_inputs = processor(
prompts,
return_tensors="pt",
padding=True,
truncation=True,
max_length=max_truncation,
# TODO Check impact on idefics
# add_end_of_utterance_token=False, # Already taken care of inside the prompts, so bypassing the processor's handling of this token
).to(device)
for _ in pb.requests:
input_len = tokenized_inputs["input_ids"].shape[1]
prefix_offsets.append(
input_len - 5
) # To decode without potential fallbacks errors
read_offsets.append(
input_len
) # To decode without potential fallbacks errors
input_lengths = tokenized_inputs["attention_mask"].sum(1)
max_input_length = input_lengths.max()
input_ids = tokenized_inputs["input_ids"]
pixel_values = tokenized_inputs.get("pixel_values", None)
image_hidden_states = None
# Allocate maximum attention_mask
attention_mask = input_ids.new_zeros(
(pb.size, max_input_length + padding_right_offset)
)
# Copy tokenizer attention_mask into fully allocated attention_mask
attention_mask[:, :max_input_length] = tokenized_inputs["attention_mask"]
# Do the same for image_attention_mask
if pixel_values is None:
image_attention_mask = None
else:
image_attention_mask = input_ids.new_zeros(
(
pb.size,
max_input_length + padding_right_offset,
pixel_values.size(1),
)
)
image_attention_mask[:, :max_input_length, :] = tokenized_inputs[
"image_attention_mask"
]
position_ids = tokenized_inputs["attention_mask"].long().cumsum(-1) - 1
position_ids.masked_fill_(tokenized_inputs["attention_mask"] == 0, 1)
all_input_ids = tokenized_inputs["input_ids"].T.split(
1, dim=1
) # It's input_ids but splitted into a tuple of tensors where each tensor is (seq_len, 1) size. It is then transformed into a list
max_tokens = len(inputs) * (max_input_length + max_decode_tokens)
return cls(
batch_id=pb.id,
requests=pb.requests,
requests_idx_mapping=requests_idx_mapping,
input_ids=input_ids,
attention_mask=attention_mask,
position_ids=position_ids,
pixel_values=pixel_values,
image_hidden_states=image_hidden_states,
image_attention_mask=image_attention_mask,
past_key_values=None,
all_input_ids=list(all_input_ids),
input_lengths=input_lengths.tolist(),
prefix_offsets=prefix_offsets,
read_offsets=read_offsets,
next_token_choosers=next_token_choosers,
stopping_criterias=stopping_criterias,
max_input_length=max_input_length.item(),
padding_right_offset=padding_right_offset,
max_tokens=max_tokens,
)
@tracer.start_as_current_span("filter")
def filter(self, request_ids: List[int]) -> Optional["IdeficsCausalLMBatch"]:
# It deletes requests from the batch. For instance when client lost connection
if len(request_ids) == 0:
raise ValueError("Batch must have at least one request")
if len(request_ids) == len(self):
return self
keep_indices = []
# New values after filtering
requests_idx_mapping = {}
requests = []
input_lengths = []
prefix_offsets = []
read_offsets = []
all_input_ids = []
max_input_length = 0
next_token_choosers = []
stopping_criterias = []
total_remaining_decode_tokens = 0
new_padding_right_offset = 0
for i, request_id in enumerate(request_ids):
idx = self.requests_idx_mapping[request_id]
requests_idx_mapping[request_id] = i
keep_indices.append(idx)
requests.append(self.requests[idx])
prefix_offsets.append(self.prefix_offsets[idx])
read_offsets.append(self.read_offsets[idx])
all_input_ids.append(self.all_input_ids[idx])
request_input_length = self.input_lengths[idx]
input_lengths.append(request_input_length)
max_input_length = max(max_input_length, request_input_length)
next_token_choosers.append(self.next_token_choosers[idx])
stopping_criteria = self.stopping_criterias[idx]
stopping_criterias.append(stopping_criteria)
remaining_decode_tokens = (
stopping_criteria.max_new_tokens - stopping_criteria.current_tokens
)
total_remaining_decode_tokens += remaining_decode_tokens
new_padding_right_offset = max(
new_padding_right_offset, remaining_decode_tokens
)
# Apply indices to input_ids, attention mask, past key values and other items that need to be cached
input_ids = self.input_ids[keep_indices]
position_ids = self.position_ids[keep_indices]
self.attention_mask = self.attention_mask[
keep_indices,
-(self.padding_right_offset + max_input_length) : (
self.attention_mask.shape[1] - self.padding_right_offset
)
+ new_padding_right_offset,
]
# Do the same for pixel_values and image_attention_mask
pixel_values = self.pixel_values[keep_indices]
self.image_attention_mask = self.image_attention_mask[
keep_indices,
-(self.padding_right_offset + max_input_length) : (
self.image_attention_mask.shape[1] - self.padding_right_offset
)
+ new_padding_right_offset,
:,
]
if self.image_hidden_states is None:
image_hidden_states = None
else:
image_hidden_states = self.image_hidden_states[keep_indices]
# Ensure that past_key_values tensors can be updated in-place
if type(self.past_key_values[0]) == tuple:
self.past_key_values = [list(layer) for layer in self.past_key_values]
# Update tensors in-place to allow incremental garbage collection
past_kv_length = max_input_length - 1
for layer in self.past_key_values:
past_keys, past_values = layer
if len(past_keys.shape) == 3:
# Force past to be of dim [self_size, num_heads, ...] for easy indexing
past_keys = past_keys.view(len(self), -1, *past_keys.shape[-2:])
past_values = past_values.view(len(self), -1, *past_values.shape[-2:])
if self.keys_head_dim_last:
layer[0] = past_keys[keep_indices, :, -past_kv_length:, :]
else:
layer[0] = past_keys[keep_indices, :, :, -past_kv_length:]
del past_keys
layer[1] = past_values[keep_indices, :, -past_kv_length:, :]
del past_values
max_tokens = len(request_ids) * max_input_length + total_remaining_decode_tokens
self.requests = requests
self.requests_idx_mapping = requests_idx_mapping
self.input_ids = input_ids
self.pixel_values = pixel_values
self.image_hidden_states = image_hidden_states
self.position_ids = position_ids
self.all_input_ids = all_input_ids
self.input_lengths = input_lengths
self.prefix_offsets = prefix_offsets
self.read_offsets = read_offsets
self.next_token_choosers = next_token_choosers
self.stopping_criterias = stopping_criterias
self.max_input_length = max_input_length
self.padding_right_offset = new_padding_right_offset
self.max_tokens = max_tokens
return self
@classmethod
@tracer.start_as_current_span("concatenate")
def concatenate(
cls, batches: List["IdeficsCausalLMBatch"]
) -> "IdeficsCausalLMBatch":
# It adds new requests to the batch
# Used for padding
total_batch_size = 0
max_input_length = 0
max_num_images = 0
padding_right_offset = 0
for batch in batches:
total_batch_size += len(batch)
max_input_length = max(max_input_length, batch.max_input_length)
max_num_images = max(max_num_images, batch.pixel_values.size(1))
padding_right_offset = max(padding_right_offset, batch.padding_right_offset)
# Batch attributes
requests = []
requests_idx_mapping = {}
input_lengths = []
prefix_offsets = []
read_offsets = []
all_input_ids = []
next_token_choosers = []
stopping_criterias = []
max_tokens = 0
# Batch tensors
input_ids = None
attention_mask = None
position_ids = None
pixel_values = None
image_hidden_states = None
image_attention_mask = None
past_key_values = []
# Used for slicing correctly inside the tensors
# Equivalent to a cumsum on batch sizes
start_index = 0
for i, batch in enumerate(batches):
requests.extend(batch.requests)
input_lengths.extend(batch.input_lengths)
prefix_offsets.extend(batch.prefix_offsets)
read_offsets.extend(batch.read_offsets)
all_input_ids.extend(batch.all_input_ids)
next_token_choosers.extend(batch.next_token_choosers)
stopping_criterias.extend(batch.stopping_criterias)
if i == 0:
requests_idx_mapping = batch.requests_idx_mapping
else:
# We need to offset the mapping for each batch by the cumulative batch size
for k, v in batch.requests_idx_mapping.items():
requests_idx_mapping[k] = v + start_index
# Slicing end index for this batch
end_index = start_index + len(batch)
# We only concatenate batches that did at least one step
if batch.past_key_values is None:
raise ValueError("only concatenate prefilled batches")
# Create empty tensor
# input_ids is always of shape [batch_size, 1]
# We do not need to pad it
if input_ids is None:
input_ids = batch.input_ids.new_empty((total_batch_size, 1))
# Copy to correct indices
input_ids[start_index:end_index] = batch.input_ids
# Create padded tensor
if attention_mask is None:
attention_mask = batch.attention_mask.new_zeros(
(total_batch_size, max_input_length + padding_right_offset),
)
curr_batch_max_num_images = batch.pixel_values.size(1)
if pixel_values is None:
pixel_values = batch.pixel_values.new_zeros(
(total_batch_size, max_num_images, 3, 224, 224)
)
pixel_values[start_index:end_index, :curr_batch_max_num_images] = (
batch.pixel_values
)
if image_attention_mask is None:
image_attention_mask = batch.image_attention_mask.new_zeros(
(
total_batch_size,
max_input_length + padding_right_offset,
max_num_images,
)
)
# We need to slice the attention mask to remove padding from previous steps
# and to remove unused allocated space
left_offset = max_input_length - batch.max_input_length
batch_left_offset = (
batch.attention_mask.shape[1]
- batch.max_input_length
- batch.padding_right_offset
)
attention_mask[
start_index:end_index,
left_offset:-padding_right_offset,
] = batch.attention_mask[
:,
batch_left_offset : -batch.padding_right_offset,
]
image_attention_mask[
start_index:end_index,
left_offset:-padding_right_offset,
:curr_batch_max_num_images,
] = batch.image_attention_mask[
:, batch_left_offset : -batch.padding_right_offset, :
]
# Create empty tensor
# position_ids is always of shape [batch_size, 1]
if position_ids is None:
position_ids = batch.position_ids.new_empty((total_batch_size, 1))
position_ids[start_index:end_index] = batch.position_ids
# Shenanigans to get dimensions because BLOOM outputs a past with a different shape
# BLOOM Keys: [batch_size * num_heads, head_dim, seq_length]
# BLOOM Values: [batch_size * num_heads, seq_length, head_dim]
# And ensure that we can update tensors in-place
if type(batch.past_key_values[0]) == tuple:
batch.past_key_values = [
[t.view(len(batch), -1, *t.shape[-2:]) for t in layer]
for layer in batch.past_key_values
]
elif len(batch.past_key_values[0][0].shape) == 3:
for layer in batch.past_key_values:
for k, t in enumerate(layer):
layer[k] = t.view(len(batch), -1, *t.shape[-2:])
# Add eventual padding tokens that were added while concatenating
max_tokens += batch.max_tokens + (
max_input_length - batch.max_input_length
) * len(batch)
start_index = end_index
first_past_kvs = batches[0].past_key_values
_, num_heads, padded_sequence_length, head_dim = first_past_kvs[0][1].shape
padded_past_values_shape = (
total_batch_size,
num_heads,
max_input_length - 1,
head_dim,
)
if batches[0].keys_head_dim_last:
padded_past_keys_shape = padded_past_values_shape
else:
# seq_length is last for BLOOM
padded_past_keys_shape = (
total_batch_size,
num_heads,
head_dim,
max_input_length - 1,
)
# Iterate over attention layers
# Concatenate past key values layer by layer to allow incremental garbage collection
for j in range(len(first_past_kvs)):
padded_past_keys = first_past_kvs[j][0].new_zeros(padded_past_keys_shape)
start_index = 0
for batch in batches:
past_keys = batch.past_key_values[j][0]
# Clear reference to the original tensor
batch.past_key_values[j][0] = None
# Slicing end index for this batch
end_index = start_index + len(batch)
# We slice the keys to remove the padding from previous batches
past_seq_len = batch.max_input_length - 1
if batch.keys_head_dim_last:
padded_past_keys[start_index:end_index, :, -past_seq_len:, :] = (
past_keys[:, :, -past_seq_len:, :]
)
else:
# BLOOM case
padded_past_keys[start_index:end_index, :, :, -past_seq_len:] = (
past_keys[:, :, :, -past_seq_len:]
)
del past_keys
start_index = end_index
padded_past_values = first_past_kvs[j][1].new_zeros(
padded_past_values_shape
)
start_index = 0
for batch in batches:
past_values = batch.past_key_values[j][1]
# Clear reference to the original tensor
batch.past_key_values[j][1] = None
# Slicing end index for this batch
end_index = start_index + len(batch)
# We slice the past values to remove the padding from previous batches
past_seq_len = batch.max_input_length - 1
padded_past_values[start_index:end_index, :, -past_seq_len:, :] = (
past_values[:, :, -past_seq_len:, :]
)
del past_values
# Update values
start_index = end_index
past_key_values.append([padded_past_keys, padded_past_values])
return cls(
batch_id=batches[0].batch_id,
requests=requests,
requests_idx_mapping=requests_idx_mapping,
input_ids=input_ids,
attention_mask=attention_mask,
position_ids=position_ids,
pixel_values=pixel_values,
image_hidden_states=image_hidden_states,
image_attention_mask=image_attention_mask,
past_key_values=past_key_values,
all_input_ids=all_input_ids,
input_lengths=input_lengths,
prefix_offsets=prefix_offsets,
read_offsets=read_offsets,
next_token_choosers=next_token_choosers,
stopping_criterias=stopping_criterias,
max_input_length=max_input_length,
padding_right_offset=padding_right_offset,
keys_head_dim_last=batches[0].keys_head_dim_last,
max_tokens=max_tokens,
)
def __len__(self):
return len(self.requests)
class IdeficsCausalLM(Model):
def __init__(
self,
model_id: str,
revision: Optional[str] = None,
quantize: Optional[str] = None,
dtype: Optional[torch.dtype] = None,
trust_remote_code: bool = False,
):
from text_generation_server.models.custom_modeling.idefics_modeling import (
IdeficsForVisionText2Text,
)
if torch.cuda.is_available():
device = torch.device("cuda")
dtype = torch.bfloat16 if dtype is None else dtype
else:
if quantize:
raise ValueError("quantization is not available on CPU")
device = torch.device("cpu")
dtype = torch.float32 if dtype is None else dtype
tokenizer = AutoTokenizer.from_pretrained(
model_id,
revision=revision,
padding_side="left",
truncation_side="left",
trust_remote_code=trust_remote_code,
)
self.processor = AutoProcessor.from_pretrained(
model_id,
revision=revision,
padding_side="left",
truncation_side="left",
trust_remote_code=trust_remote_code,
)
model = IdeficsForVisionText2Text.from_pretrained(
model_id,
revision=revision,
torch_dtype=dtype,
device_map=(
"auto"
if torch.cuda.is_available() and torch.cuda.device_count() > 1
else None
),
load_in_8bit=quantize == "bitsandbytes",
trust_remote_code=trust_remote_code,
)
if torch.cuda.is_available() and torch.cuda.device_count() == 1:
model = model.cuda()
if tokenizer.pad_token_id is None:
if model.config.pad_token_id is not None:
tokenizer.pad_token_id = model.config.pad_token_id
elif model.config.eos_token_id is not None:
tokenizer.pad_token_id = model.config.eos_token_id
elif tokenizer.eos_token_id is not None:
tokenizer.pad_token_id = tokenizer.eos_token_id
else:
tokenizer.add_special_tokens({"pad_token": "<unk>"})
super(IdeficsCausalLM, self).__init__(
model=model,
tokenizer=tokenizer,
requires_padding=True,
dtype=dtype,
device=device,
)
@property
def batch_type(self) -> Type[IdeficsCausalLMBatch]:
return IdeficsCausalLMBatch
def forward(
self,
input_ids,
attention_mask,
position_ids,
pixel_values,
image_hidden_states,
image_attention_mask,
past_key_values: Optional = None,
) -> Tuple[torch.Tensor, List[Tuple[torch.Tensor, torch.Tensor]]]:
# Model Forward
kwargs = {
"input_ids": input_ids,
"attention_mask": attention_mask,
"pixel_values": pixel_values,
"image_hidden_states": image_hidden_states,
"image_attention_mask": image_attention_mask,
"past_key_values": past_key_values,
"use_cache": True,
"return_dict": True,
}
if self.has_position_ids:
kwargs["position_ids"] = position_ids
outputs, speculative_logits = self.model.forward(**kwargs)
return (
outputs.logits,
speculative_logits,
outputs.past_key_values,
outputs.image_hidden_states,
)
@tracer.start_as_current_span("generate_token")
def generate_token(
self, batch: IdeficsCausalLMBatch
) -> Tuple[List[Generation], Optional[IdeficsCausalLMBatch], Tuple[int, int]]:
start = time.time_ns()
# slice the attention mask to the correct shape
attention_mask = batch.attention_mask[:, : -batch.padding_right_offset]
if batch.image_attention_mask is None:
image_attention_mask = None
else:
if batch.input_ids.size(1) == 1:
# THIS is a hack: when calling idefics.generate, the first time, we need the whole image_attention_mask (size bs x max_seq_len x max_num_images),
# but the subsequent times, we only need the last attention mask along the `max_seq_len` dimension
# this is due to the nature IDEFICS: it's an encoder decoder, and so when decoding, only the currently generated
# token need to attend to the encoder hidden states (i.e. the vision encoder)
# Also see seq2seq_lm.Seq2SeqLM.generate_token which has roughly the same logic
image_attention_mask = batch.image_attention_mask[
:, -(batch.padding_right_offset + 1)
].unsqueeze(1)
else:
image_attention_mask = batch.image_attention_mask[
:, : -batch.padding_right_offset
]
logits, speculative_logits, past, image_hidden_states = self.forward(
input_ids=batch.input_ids,
attention_mask=attention_mask,
position_ids=batch.position_ids,
pixel_values=batch.pixel_values,
image_hidden_states=batch.image_hidden_states,
image_attention_mask=image_attention_mask,
past_key_values=batch.past_key_values,
)
# Hardcoded remove image tokens
logits[:, 32000:32001] = torch.finfo(logits.dtype).min
start_decode = time.time_ns()
# Results
generations: List[Generation] = []
stopped = True
# Zipped iterator
iterator = zip(
batch.requests,
batch.input_lengths,
batch.prefix_offsets,
batch.read_offsets,
logits,
batch.next_token_choosers,
batch.stopping_criterias,
batch.all_input_ids,
)
# For each member of the batch
for i, (
request,
input_length,
prefix_offset,
read_offset,
logits,
next_token_chooser,
stopping_criteria,
all_input_ids,
) in enumerate(iterator):
# Select next token
next_token_id, logprobs = next_token_chooser(
all_input_ids.view(1, -1), logits[-1:, :]
)
# Append next token to all tokens
all_input_ids = torch.cat([all_input_ids, next_token_id])
new_input_length = input_length + 1
# Generated token
next_token_logprob = logprobs[-1, next_token_id]
next_token_id_squeezed = next_token_id.squeeze()
next_token_text, prefix_offset, read_offset = self.decode_token(
all_input_ids[:, 0], prefix_offset, read_offset
)
# Evaluate stopping criteria
stop, reason = stopping_criteria(
next_token_id_squeezed,
next_token_text,
)
if not stop:
stopped = False
# Shard generations
# All generations will be appended in the rust sharded client
if i % self.world_size == self.rank:
if stop:
# Decode generated tokens
output_text, _, _ = self.decode_token(
all_input_ids[:, 0],
prefix_offset=len(all_input_ids)
- stopping_criteria.current_tokens
- 1,
read_offset=len(all_input_ids)
- stopping_criteria.current_tokens,
skip_special_tokens=True,
)
# Get seed
if isinstance(next_token_chooser.choice, Sampling):
seed = next_token_chooser.choice.seed
else:
seed = None
generated_text = GeneratedText(
output_text, stopping_criteria.current_tokens, reason, seed
)
else:
generated_text = None
# Prefill
if stopping_criteria.current_tokens == 1 and request.prefill_logprobs:
# Remove generated token to only have prefill and add nan for first prompt token
prefill_logprobs = [float("nan")] + torch.log_softmax(
logits, -1
).gather(1, all_input_ids[1:]).squeeze(1)[
-new_input_length:-1
].tolist()
prefill_token_ids = all_input_ids[-new_input_length:-1]
prefill_texts = self.tokenizer.batch_decode(
prefill_token_ids,
clean_up_tokenization_spaces=False,
skip_special_tokens=False,
)
prefill_tokens = Tokens(
prefill_token_ids,
prefill_logprobs,
prefill_texts,
is_special=[],
)
else:
prefill_tokens = None
top_tokens = None
generation = Generation(
request.id,
prefill_tokens,
Tokens(
[next_token_id_squeezed],
[next_token_logprob],
[next_token_text],
[next_token_id_squeezed.item() in self.all_special_ids],
),
generated_text,
top_tokens,
)
generations.append(generation)
# Update values
batch.next_token_choosers[i] = batch.next_token_choosers[i].advance_grammar(
next_token_id_squeezed.item()
)
batch.input_ids[i, 0] = next_token_id
batch.all_input_ids[i] = all_input_ids
batch.input_lengths[i] = new_input_length
batch.prefix_offsets[i] = prefix_offset
batch.read_offsets[i] = read_offset
batch.max_input_length = max(batch.max_input_length, new_input_length)
# We finished all generations in the batch; there is no next batch
if stopped:
forward_ns = start_decode - start
decode_ns = time.time_ns() - start_decode
return generations, None, (forward_ns, decode_ns)
# Slice unused values from prefill
batch.input_ids = batch.input_ids[:, :1]
# Update attention_mask as we added a new token to input_ids
batch.attention_mask[:, -batch.padding_right_offset] = 1
batch.image_attention_mask[:, -batch.padding_right_offset, :] = (
batch.image_attention_mask[:, -(batch.padding_right_offset + 1), :]
)
# Decrease right offset
batch.padding_right_offset -= 1
# Update position_ids
batch.position_ids = batch.position_ids[:, -1:] + 1
# Update past key values
batch.past_key_values = past
batch.image_hidden_states = image_hidden_states
forward_ns = start_decode - start
decode_ns = time.time_ns() - start_decode
return generations, batch, (forward_ns, decode_ns)