hf_text-generation-inference/server/text_generation_server/layers/attention/cuda.py

340 lines
11 KiB
Python

import torch
from text_generation_server.layers.attention.kv_cache import KVCache, KVScales
from text_generation_server.utils.import_utils import SYSTEM
from text_generation_server.models.globals import (
ATTENTION,
BLOCK_SIZE,
)
from text_generation_server.layers.attention import Seqlen
from typing import Optional
major, minor = torch.cuda.get_device_capability()
is_sm75 = major == 7 and minor == 5
_PARTITION_SIZE = 512
def paged_attention(
query: torch.Tensor,
kv_cache: KVCache,
kv_head_mapping: torch.Tensor,
softmax_scale: float,
block_tables: torch.Tensor,
seqlen: Seqlen,
max_s: int,
*,
kv_scales: KVScales,
softcap: Optional[float] = None,
):
# Adapted from: https://github.com/vllm-project/vllm/blob/f8a1e39fae05ca610be8d5a78be9d40f5274e5fc/vllm/model_executor/layers/attention.py
# Copyright 2023 The vLLM team. All rights
# reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
# value_cache => [num_blocks, num_heads, head_size, block_size]
# block_size = value_cache.shape[3]
block_size = BLOCK_SIZE
num_seqs, num_heads, head_size = query.shape
max_num_partitions = (max_s + _PARTITION_SIZE - 1) // _PARTITION_SIZE
can_scale = kv_cache.can_scale(kv_scales)
# NOTE(woosuk): We use a simple heuristic to decide whether to use
# PagedAttention V1 or V2. If the number of partitions is 1, we use
# V1 to avoid the overhead of reduction. Also, if the number of
# sequences or heads is large, we use V1 since there is enough work
# to parallelize.
if ATTENTION == "flashinfer":
from text_generation_server.layers.attention.flashinfer import decode_state
return decode_state.get().forward(
# TODO: remove `contiguous` call once https://github.com/flashinfer-ai/flashinfer/pull/553 is merged.
query.contiguous(),
paged_kv_cache=(kv_cache.key, kv_cache.value),
logits_soft_cap=softcap,
sm_scale=softmax_scale,
k_scale=kv_scales.key_scale_cpu if can_scale else 1.0,
v_scale=kv_scales.value_scale_cpu if can_scale else 1.0,
)
elif ATTENTION == "flashdecoding":
max_q = 1
max_k = max_s
import flash_attn_2_cuda
# TODO fixme when flash contains the fix.
# Number of splits is not correctly handled
# by the current path
# https://github.com/Dao-AILab/flash-attention/blob/320fb59487658f033f56711efd3d61b7c7a6f8f3/csrc/flash_attn/flash_api.cpp#L577
# This fails becuase we're using causal, therefore window_right is set to 0 and the split logic is never applied.
if softcap is None:
softcap = 0.0
out = flash_attn_2_cuda.varlen_fwd(
query,
kv_cache.key,
kv_cache.value,
None,
seqlen.cu_seqlen_q,
seqlen.cu_seqlen_k,
None, # pad_k
None,
block_tables,
None,
max_q,
max_k,
0.0, # dropout
softmax_scale,
False, # zero_tensors
True, # causal
-1, # Window_left
-1, # Window right
softcap,
False, # return softmax
None, # generator
)
return out[0]
else:
if softcap is not None:
raise RuntimeError("Paged attention doesn't support softcapping")
input_lengths = seqlen.input_lengths + seqlen.cache_lengths
import attention_kernels
out = torch.empty_like(query)
use_v1 = max_s <= 8192 and (
max_num_partitions == 1 or num_seqs * num_heads > 512
)
if use_v1:
attention_kernels.paged_attention_v1(
out,
query,
kv_cache.key,
kv_cache.value,
kv_head_mapping,
softmax_scale,
block_tables,
input_lengths,
block_size,
max_s,
None,
"auto",
1.0,
)
else:
# Run PagedAttention V2.
assert _PARTITION_SIZE % block_size == 0
tmp_output = torch.empty(
size=(num_seqs, num_heads, max_num_partitions, head_size),
dtype=out.dtype,
device=out.device,
)
exp_sums = torch.empty(
size=(num_seqs, num_heads, max_num_partitions),
dtype=torch.float32,
device=out.device,
)
max_logits = torch.empty_like(exp_sums)
attention_kernels.paged_attention_v2(
out,
exp_sums,
max_logits,
tmp_output,
query,
kv_cache.key,
kv_cache.value,
kv_head_mapping,
softmax_scale,
block_tables,
input_lengths,
block_size,
max_s,
None,
"auto",
1.0,
)
return out
try:
is_ampere_or_newer = major >= 8 and minor >= 0
if not is_ampere_or_newer:
raise ImportError("FlashAttention only supports Ampere GPUs or newer.")
import flash_attn_2_cuda
V2 = True
except ImportError:
try:
import flash_attn_cuda
V2 = False
except ImportError as e:
if major >= 8:
architecture_suffix = f"-{SYSTEM}"
raise ImportError(
"Flash Attention V2 is not installed.\n"
"Use the official Docker image (ghcr.io/huggingface/text-generation-inference:latest) "
f"or install flash attention v2 with `cd server && make install install-flash-attention-v2{architecture_suffix}`"
)
elif is_sm75:
raise ImportError(
"Flash Attention is not installed.\n"
"Use the official Docker image (ghcr.io/huggingface/text-generation-inference:latest) "
"or install flash attention with `cd server && make install install-flash-attention`"
) from e
else:
raise ImportError(
f"GPU with CUDA capability {major} {minor} is not supported"
) from e
if ATTENTION == "flashdecoding" and not V2:
raise ValueError("Flash decoding requires Flash Attention V2")
SUPPORTS_WINDOWING = V2
def attention(
*,
query: torch.Tensor,
key: torch.Tensor,
value: torch.Tensor,
kv_cache: KVCache,
kv_scales: KVScales,
seqlen: Seqlen,
block_tables: torch.Tensor,
softmax_scale: float,
window_size_left: int = -1,
causal: bool = True,
softcap: Optional[float] = None,
):
can_scale = kv_cache.can_scale(kv_scales)
if ATTENTION == "flashinfer":
from text_generation_server.layers.attention.flashinfer import (
prefill_with_paged_kv_state,
)
if softcap is None:
softcap = 0.0
return prefill_with_paged_kv_state.get().forward(
# TODO: remove `contiguous` call once https://github.com/flashinfer-ai/flashinfer/pull/553 is merged.
query.contiguous(),
causal=causal,
paged_kv_cache=(kv_cache.key, kv_cache.value),
logits_soft_cap=softcap,
sm_scale=softmax_scale,
window_left=window_size_left,
k_scale=kv_scales.key_scale_cpu if can_scale else 1.0,
v_scale=kv_scales.value_scale_cpu if can_scale else 1.0,
)
# If we are using flashdecoding or paged, we always use flash-attn for
# the prefill. We have to branch on whether we use flash-attn v1 or v2.
elif V2:
out = torch.empty_like(query)
if window_size_left <= 0 and window_size_left != -1:
raise ValueError("`window_size_left` must be > 0 or -1")
if softcap is None:
softcap = 0.0
return flash_attn_2_cuda.varlen_fwd(
query,
# flashdecoding: pass the KV caches, paged: pass the KV.
kv_cache.key if ATTENTION == "flashdecoding" else key,
kv_cache.value if ATTENTION == "flashdecoding" else value,
out,
seqlen.cu_seqlen_q,
seqlen.cu_seqlen_k,
None,
None,
block_tables if ATTENTION == "flashdecoding" else None,
None,
seqlen.max_q,
seqlen.max_k,
0.0,
softmax_scale,
False,
causal,
window_size_left,
0,
softcap,
False,
None,
)[0]
else:
if window_size_left != -1:
raise NotImplementedError(
"window_size_left is only available with flash attn v2"
)
if softcap is not None:
raise NotImplementedError("softcap is not available in flash attn v1")
# Flash attention v1 requires q, k and v to have the same number of heads
if key.shape[1] != query.shape[1]:
# MQA expand
if key.shape[1] == 1:
key = key.expand(-1, query.shape[1], -1)
# Grouped attention reshape
else:
original_shape = key.shape
key = (
key.unsqueeze(2)
.expand(-1, -1, query.shape[1] // key.shape[1], -1)
.reshape(original_shape[0], -1, original_shape[2])
)
if value.shape[1] != query.shape[1]:
# MQA expand
if value.shape[1] == 1:
value = value.expand(-1, query.shape[1], -1)
# Grouped attention reshape
else:
original_shape = value.shape
value = (
value.unsqueeze(2)
.expand(-1, -1, query.shape[1] // value.shape[1], -1)
.reshape(original_shape[0], -1, original_shape[2])
)
out = torch.empty_like(query)
flash_attn_cuda.fwd(
query,
key,
value,
out,
seqlen.cu_seqlen_q,
seqlen.cu_seqlen_q,
seqlen.max_q,
seqlen.max_k,
0.0,
softmax_scale,
False,
causal,
False,
0,
None,
)
return out
__all__ = [
"SUPPORTS_WINDOWING",
"attention",
"paged_attention",
]