hf_text-generation-inference/server/tests/models/test_flash_causal_lm.py

158 lines
5.9 KiB
Python

import pytest
import torch
from transformers import AutoTokenizer
from text_generation_server.pb import generate_pb2
from text_generation_server.models.flash_causal_lm import (
FlashCausalLMBatch,
FlashCausalLM,
)
from text_generation_server.models.custom_modeling.flash_llama_modeling import (
FlashLlamaForCausalLM,
)
from text_generation_server.models.globals import set_adapter_to_index
from text_generation_server.utils.import_utils import SYSTEM, empty_cache, synchronize
from unittest.mock import Mock
import base64
model_id = "meta-llama/Meta-Llama-3.1-8B-Instruct"
set_adapter_to_index({})
def test_flash_causal_lm_warmup():
if SYSTEM == "cuda":
flash_causal_lm_warmup()
else:
pytest.skip("Test only runs on CUDA")
def flash_causal_lm_warmup():
revision = "main"
quantize = None
speculator = False
dtype = torch.float16
kv_cache_dtype = torch.float16
trust_remote_code = False
lora_adapter_ids = None
device = torch.device("cuda:0")
current_memory = torch.cuda.memory_allocated(device)
default_causal_lm = FlashCausalLM(
model_id=model_id,
model_class=FlashLlamaForCausalLM,
revision=revision,
quantize=quantize,
speculator=speculator,
dtype=dtype,
kv_cache_dtype=kv_cache_dtype,
trust_remote_code=trust_remote_code,
lora_adapter_ids=lora_adapter_ids,
)
model_tokenizer = AutoTokenizer.from_pretrained(model_id)
available_memory_after_model_and_tokenizer = torch.cuda.memory_allocated(device)
model_and_tokenizer_memory = (
available_memory_after_model_and_tokenizer - current_memory
)
model_and_tokenizer_memory_mb = model_and_tokenizer_memory / 1024 / 1024
print(f"Model and Tokenizer memory: {model_and_tokenizer_memory_mb}")
default_pb_parameters = generate_pb2.NextTokenChooserParameters(
temperature=0.9,
top_k=10,
top_p=0.9,
typical_p=0.9,
repetition_penalty=1.2,
watermark=True,
frequency_penalty=0.1,
)
default_pb_stop_parameters = generate_pb2.StoppingCriteriaParameters(
stop_sequences=[], max_new_tokens=1024, ignore_eos_token=True
)
# define the batches to check and the expected number of blocks and output
batches_and_expected = [
Mock(
num_requests=8,
expected_num_blocks=16376,
expected_max_supported_total_tokens=22449,
),
Mock(
num_requests=4,
expected_num_blocks=8188,
expected_max_supported_total_tokens=30768,
),
Mock(
num_requests=2,
expected_num_blocks=4094,
expected_max_supported_total_tokens=40445,
),
]
for batch_of_size_n in batches_and_expected:
empty_cache()
synchronize()
# build the inputs (similar to prefill used in warmup)
inputs_text = "_test " * 1024
b64_encoded_image = "iVBORw0KGgoAAAANSUhEUgAAABQAAAAUCAIAAAAC64paAAABg2lDQ1BJQ0MgcHJvZmlsZQAAKJF9kT1Iw0AcxV/TSotUROxQxCFDdbKLijjWKhShQqgVWnUwufQLmrQkKS6OgmvBwY/FqoOLs64OroIg+AHi7OCk6CIl/i8ptIjx4Lgf7+497t4BQqvKNDOQADTdMjKppJjLr4rBVwQQwhAERGVm1uckKQ3P8XUPH1/v4jzL+9yfY0AtmAzwicQJVjcs4g3imU2rznmfOMLKskp8Tjxh0AWJH7muuPzGueSwwDMjRjYzTxwhFks9rPQwKxsa8TRxTNV0yhdyLquctzhr1Qbr3JO/MFzQV5a5TnMUKSxiCRJEKGiggiosxGnVSTGRof2kh3/E8UvkUshVASPHAmrQIDt+8D/43a1ZnJp0k8JJoO/Ftj/GgOAu0G7a9vexbbdPAP8zcKV3/bUWMPtJerOrxY6AwW3g4rqrKXvA5Q4QfarLhuxIfppCsQi8n9E35YHhW6B/ze2ts4/TByBLXaVvgINDYLxE2ese7w719vbvmU5/PycecohsjayNAAAACXBIWXMAAC4jAAAuIwF4pT92AAAAB3RJTUUH6AQIEQMnlTSSjwAAABl0RVh0Q29tbWVudABDcmVhdGVkIHdpdGggR0lNUFeBDhcAAAASSURBVDjLY2AYBaNgFIyCoQsABMQAAeRw1DoAAAAASUVORK5CYII="
inputs_image = f"![](data:image/jpeg;base64,{b64_encoded_image})"
inputs = inputs_text + inputs_image
# inputs are also added as chunks to define the type
input_chunks = [
generate_pb2.InputChunk(text=inputs_text),
generate_pb2.InputChunk(
image=generate_pb2.Image(
# convert the base64 encoded image to bytes by decoding it
data=base64.b64decode(b64_encoded_image),
mimetype="image/jpeg;base64",
)
),
]
# build a batch of size n requests
default_pb_requests = []
for i in range(batch_of_size_n.num_requests):
req = generate_pb2.Request(
id=i,
inputs=inputs,
input_chunks=generate_pb2.Input(chunks=input_chunks),
prefill_logprobs=True,
truncate=1024,
parameters=default_pb_parameters,
stopping_parameters=default_pb_stop_parameters,
)
default_pb_requests.append(req)
# convert the list of requests to a FlashCausalLMBatch this will calculate the number of blocks
default_pb_batch = generate_pb2.Batch(
id=0, requests=default_pb_requests, size=batch_of_size_n.num_requests
)
default_flash_causal_lm_batch = FlashCausalLMBatch.from_pb(
default_pb_batch, model_tokenizer, torch.float16, torch.device("cuda:0")
)
print("number of blocks", default_flash_causal_lm_batch.num_blocks)
assert (
default_flash_causal_lm_batch.num_blocks
== batch_of_size_n.expected_num_blocks
)
max_supported_total_tokens = default_causal_lm.warmup(
default_flash_causal_lm_batch
)
print("output", max_supported_total_tokens)
assert (
max_supported_total_tokens
== batch_of_size_n.expected_max_supported_total_tokens
)
warmup_response = generate_pb2.WarmupResponse(
max_supported_total_tokens=max_supported_total_tokens
)
print(warmup_response)
if __name__ == "__main__":
test_flash_causal_lm_warmup()