hf_text-generation-inference/integration-tests/models/test_flash_starcoder_gptq.py

76 lines
2.2 KiB
Python

import pytest
from testing_utils import SYSTEM, is_flaky_async, require_backend_async
@pytest.fixture(scope="module")
def flash_starcoder_gptq_handle(launcher):
with launcher("Narsil/starcoder-gptq", num_shard=2, quantize="gptq") as handle:
yield handle
@pytest.fixture(scope="module")
async def flash_starcoder_gptq(flash_starcoder_gptq_handle):
await flash_starcoder_gptq_handle.health(300)
return flash_starcoder_gptq_handle.client
@pytest.mark.asyncio
@is_flaky_async(max_attempts=10)
async def test_flash_starcoder_gptq(flash_starcoder_gptq, generous_response_snapshot):
response = await flash_starcoder_gptq.generate(
"def geometric_mean(L: List[float]):",
max_new_tokens=20,
decoder_input_details=True,
)
assert response.details.generated_tokens == 20
assert (
response.generated_text
== '\n """\n Calculate the geometric mean of a list of numbers.\n\n :param L: List'
)
if SYSTEM != "rocm":
assert response == generous_response_snapshot
@pytest.mark.asyncio
@is_flaky_async(max_attempts=10)
async def test_flash_starcoder_gptq_default_params(
flash_starcoder_gptq, generous_response_snapshot
):
response = await flash_starcoder_gptq.generate(
"def geometric_mean(L: List[float]):",
max_new_tokens=20,
temperature=0.2,
top_p=0.95,
decoder_input_details=True,
seed=0,
)
assert response.details.generated_tokens == 20
assert (
response.generated_text == "\n return reduce(lambda x, y: x * y, L) ** (1.0"
)
if SYSTEM != "rocm":
assert response == generous_response_snapshot
@pytest.mark.asyncio
@require_backend_async("cuda")
async def test_flash_starcoder_gptq_load(
flash_starcoder_gptq, generate_load, generous_response_snapshot
):
# TODO: exllamav2 gptq kernel is highly non-deterministic on ROCm.
responses = await generate_load(
flash_starcoder_gptq,
"def geometric_mean(L: List[float]):",
max_new_tokens=10,
n=4,
)
assert len(responses) == 4
assert all([r.generated_text == responses[0].generated_text for r in responses])
assert responses == generous_response_snapshot