204 lines
7.8 KiB
C++
204 lines
7.8 KiB
C++
#include <cstdlib>
|
|
#include <fstream>
|
|
|
|
#include <fmt/ranges.h>
|
|
#include <spdlog/spdlog.h>
|
|
#include <nvml.h>
|
|
|
|
#include "backend.h"
|
|
#include "hardware.h"
|
|
|
|
|
|
void huggingface::tgi::backends::InitializeLogging() {
|
|
#ifdef NDEBUG
|
|
if (const auto TRTLLM_LOG_LEVEL_CSTR = std::getenv("TRTLLM_LOG_LEVEL")) {
|
|
std::string log_level(TRTLLM_LOG_LEVEL_CSTR);
|
|
std::transform(log_level.begin(), log_level.end(), log_level.begin(), [](unsigned char c) {
|
|
return std::tolower(c);
|
|
});
|
|
|
|
if (log_level == "debug")
|
|
spdlog::set_level(spdlog::level::debug);
|
|
else
|
|
spdlog::set_level(spdlog::level::info);
|
|
}
|
|
#else
|
|
spdlog::set_level(spdlog::level::debug);
|
|
#endif
|
|
}
|
|
|
|
void huggingface::tgi::backends::InitializeBackend() {
|
|
SPDLOG_INFO("Initializing Backend...");
|
|
nvmlInit_v2();
|
|
initTrtLlmPlugins();
|
|
|
|
InitializeLogging();
|
|
|
|
SPDLOG_INFO("Backend Executor Version: {}", tle::version());
|
|
const auto numGpus = huggingface::hardware::cuda::GetNumDevices();
|
|
if (numGpus.has_value()) {
|
|
SPDLOG_INFO("Detected {:d} Nvidia GPU(s)", numGpus.value());
|
|
} else {
|
|
SPDLOG_WARN("Failed to detected Nvidia GPU(s) on the system");
|
|
}
|
|
}
|
|
|
|
[[nodiscard]]
|
|
tle::ParallelConfig
|
|
huggingface::tgi::backends::GetParallelConfig(const size_t worldSize, const std::string workerPath) noexcept {
|
|
auto mode = tle::CommunicationMode::kLEADER;
|
|
std::optional<tle::OrchestratorConfig> orchestratorConfig = std::nullopt;
|
|
|
|
if (worldSize > 1) {
|
|
SPDLOG_INFO("Detected sharded engine deployment, using orchestrator mode");
|
|
mode = tle::CommunicationMode::kORCHESTRATOR;
|
|
orchestratorConfig = std::make_optional<tle::OrchestratorConfig>(true, workerPath, nullptr, true);
|
|
} else {
|
|
SPDLOG_INFO("Detected single engine deployment, using leader mode");
|
|
}
|
|
|
|
return tle::ParallelConfig(tle::CommunicationType::kMPI, mode, std::nullopt, std::nullopt, orchestratorConfig);
|
|
}
|
|
|
|
[[nodiscard]]
|
|
tle::ExecutorConfig huggingface::tgi::backends::GetExecutorConfig(const json &config, const std::string &workerPath) {
|
|
tle::ExecutorConfig execConfig(/* maxBeamWidth = */ 1);
|
|
|
|
// Retrieve the compute capabilities to enable some options at runtime
|
|
const auto computeCapabilities = huggingface::hardware::cuda::GetCudaComputeCapabilities();
|
|
|
|
// Single engine (TP = PP = 1) -> using leader mode (no MPI involved)
|
|
const auto worldSize = config["/pretrained_config/mapping/world_size"_json_pointer].get<size_t>();
|
|
execConfig.setParallelConfig(GetParallelConfig(worldSize, workerPath));
|
|
|
|
// Define some configuration variables
|
|
execConfig.setKvCacheConfig(tle::KvCacheConfig(true));
|
|
execConfig.setEnableChunkedContext(computeCapabilities.IsPostAmpere());
|
|
execConfig.setSchedulerConfig(tle::SchedulerConfig(tle::CapacitySchedulerPolicy::kMAX_UTILIZATION));
|
|
return execConfig;
|
|
}
|
|
|
|
tle::SamplingConfig huggingface::tgi::backends::GetSamplingConfig(
|
|
const uint32_t topK,
|
|
const float_t topP,
|
|
const float_t temperature,
|
|
const float_t repetition_penalty,
|
|
const float_t frequency_penalty,
|
|
const uint64_t seed) noexcept {
|
|
|
|
return tle::SamplingConfig(
|
|
1, // TGI only use a single beam
|
|
topK,
|
|
topP,
|
|
std::nullopt,
|
|
std::nullopt,
|
|
std::nullopt,
|
|
seed,
|
|
temperature,
|
|
temperature,
|
|
std::nullopt,
|
|
repetition_penalty,
|
|
std::nullopt,
|
|
frequency_penalty
|
|
);
|
|
}
|
|
|
|
std::optional<std::list<std::vector<huggingface::tgi::backends::TokenId>>>
|
|
huggingface::tgi::backends::GetStopWordsFromConfig(
|
|
const std::filesystem::path &generationConfigPath) noexcept {
|
|
if (exists(generationConfigPath)) {
|
|
const auto generationConfig = json::parse(std::ifstream(generationConfigPath));
|
|
if (const auto eosTokenIds = generationConfig["/eos_token_id"_json_pointer]; eosTokenIds.is_array()) {
|
|
SPDLOG_INFO(FMT_STRING("Found {:d} EOS tokens"), eosTokenIds.size());
|
|
std::list<std::vector<huggingface::tgi::backends::TokenId>> stopWords(eosTokenIds.size());
|
|
|
|
const auto to_single_token = [](const auto tokenIdObj) -> decltype(stopWords)::value_type {
|
|
return {tokenIdObj.template get<tle::TokenIdType>()};
|
|
};
|
|
|
|
std::transform(eosTokenIds.cbegin(), eosTokenIds.cend(), stopWords.begin(), to_single_token);
|
|
return stopWords;
|
|
} else {
|
|
SPDLOG_INFO("Invalid EOS tokens entry found (not an array)");
|
|
}
|
|
} else {
|
|
SPDLOG_INFO("No EOS tokens found, generation_config.json doesn't exist");
|
|
}
|
|
|
|
return std::nullopt;
|
|
}
|
|
|
|
huggingface::tgi::backends::TensorRtLlmBackend::TensorRtLlmBackend(
|
|
const std::filesystem::path &enginesFolder,
|
|
const std::filesystem::path &executorWorker
|
|
) :
|
|
config(json::parse(std::ifstream(enginesFolder / "config.json"))),
|
|
executor(enginesFolder, tensorrt_llm::executor::ModelType::kDECODER_ONLY,
|
|
GetExecutorConfig(config, executorWorker.string())) {
|
|
|
|
SPDLOG_INFO(FMT_STRING("Engine (version={})"), config["/version"_json_pointer].get<std::string_view>());
|
|
|
|
// Ensure we have enough GPUs on the system
|
|
const auto worldSize = config["/pretrained_config/mapping/world_size"_json_pointer].get<size_t>();
|
|
const auto numGpus = huggingface::hardware::cuda::GetNumDevices().value_or(0);
|
|
if (numGpus < worldSize) {
|
|
SPDLOG_CRITICAL(FMT_NOT_ENOUGH_GPUS, numGpus, worldSize);
|
|
// todo : raise exception to catch on rust side
|
|
}
|
|
|
|
// Cache variables
|
|
maxNumTokens = config["/build_config/max_num_tokens"_json_pointer].get<uint32_t>();
|
|
|
|
// Attempt to discover stopWords from the generation_config.json
|
|
const auto generationConfigPath = enginesFolder / "generation_config.json";
|
|
stopWords = GetStopWordsFromConfig(generationConfigPath).value_or(std::list<std::vector<TokenId>>());
|
|
}
|
|
|
|
[[nodiscard("Returned number of requests needs to be consumed")]]
|
|
size_t huggingface::tgi::backends::TensorRtLlmBackend::NumResponsesReady() const {
|
|
#ifdef NDEBUG
|
|
return executor.getNumResponsesReady();
|
|
#else
|
|
const auto numResponses = executor.getNumResponsesReady();
|
|
if (numResponses > 0) SPDLOG_INFO(FMT_STRING("Num responses ready: {:d}"), numResponses);
|
|
return numResponses;
|
|
#endif
|
|
}
|
|
|
|
[[nodiscard("Returned request id needs to be provided back to gather generated tokens")]]
|
|
tle::IdType huggingface::tgi::backends::TensorRtLlmBackend::Submit(
|
|
const std::vector<tle::TokenIdType> &tokens,
|
|
const uint32_t maxNewTokens,
|
|
const int32_t topK,
|
|
const float_t topP,
|
|
const float_t temperature,
|
|
const float_t repetitionPenalty,
|
|
const float_t frequencyPenalty,
|
|
const uint64_t seed
|
|
) {
|
|
const auto maxNewTokensChecked = std::min(maxNewTokens, static_cast<uint32_t>(maxNumTokens - tokens.size()));
|
|
#ifndef NDEBUG
|
|
{
|
|
const auto &iterations = executor.getLatestIterationStats();
|
|
const auto &lastIteration = iterations.front();
|
|
|
|
SPDLOG_DEBUG(FMT_EXECUTOR_STATS, fmt::join(tokens, ", "), lastIteration.numActiveRequests);
|
|
SPDLOG_DEBUG(FMT_SAMPLING_CONFIG, topK, topP, temperature, repetitionPenalty, frequencyPenalty, seed);
|
|
SPDLOG_DEBUG(FMT_STRING("Asking for max_new_tokens={:d}"), maxNewTokensChecked);
|
|
}
|
|
#endif
|
|
|
|
const auto sampling = GetSamplingConfig(topK, topP, temperature, repetitionPenalty, frequencyPenalty, seed);
|
|
|
|
// Build the request
|
|
auto request = tle::Request{tokens, CAST_SIZETYPE(maxNewTokensChecked), true, sampling, OUTPUT_CONFIG};
|
|
request.setStopWords(stopWords);
|
|
|
|
// Submit to the executor for batching
|
|
return executor.enqueueRequest(request);
|
|
}
|
|
|
|
std::vector<tle::Response> huggingface::tgi::backends::TensorRtLlmBackend::PullNewTokens() {
|
|
return executor.awaitResponses();
|
|
}
|