hf_text-generation-inference/server/text_generation_server/layers/fp8.py

259 lines
8.0 KiB
Python

import torch
from dataclasses import dataclass
from typing import Optional, Union, List
from loguru import logger
from text_generation_server.utils.import_utils import SYSTEM
from text_generation_server.utils.weights import (
Weight,
WeightsLoader,
UnquantizedWeight,
Weights,
)
from text_generation_server.utils.log import log_master, log_once
import importlib.util
FBGEMM_MM_AVAILABLE = False
FBGEMM_DYN_AVAILABLE = False
def is_fbgemm_gpu_available():
try:
return importlib.util.find_spec("fbgemm_gpu.experimental.gen_ai") is not None
except ModuleNotFoundError:
return False
if is_fbgemm_gpu_available():
if SYSTEM == "cuda":
major, _ = torch.cuda.get_device_capability()
FBGEMM_MM_AVAILABLE = major == 9
FBGEMM_DYN_AVAILABLE = major >= 8
else:
log_master(logger.warning, "FBGEMM fp8 kernels are not installed.")
def get_fp8_linear() -> torch.nn.Module:
"""
Return an FP8 linear `Module` that is compatible with the current system.
"""
if SYSTEM == "cuda":
major, _ = torch.cuda.get_device_capability()
if major == 8:
from text_generation_server.layers.marlin import GPTQMarlinFP8Linear
return GPTQMarlinFP8Linear
# On other systems let Torch decide if the hardware supports FP8.
return Fp8Linear
def fp8_quantize(
weight, scale_upper_bound=None, qdtype=torch.float8_e4m3fn, scalar=False
):
if FBGEMM_DYN_AVAILABLE and not scalar:
qweight, scale = torch.ops.fbgemm.quantize_fp8_per_row(
weight, bs=None, scale_ub=scale_upper_bound, output_dtype=qdtype
)
return qweight, scale
# weight, scale = quant_weights(weight, torch.int8, False)
finfo = torch.finfo(qdtype)
# Calculate the scale as dtype max divided by absmax
scale = finfo.max / weight.abs().max().clamp(min=1e-12, max=scale_upper_bound)
# scale and clamp the tensor to bring it to
# the representative range of float8 data type
# (as default cast is unsaturated)
qweight = (weight * scale).clamp(min=finfo.min, max=finfo.max)
# Return both float8 data and the inverse scale (as float),
# as both required as inputs to torch._scaled_mm
qweight = qweight.to(qdtype)
scale = scale.float().reciprocal()
return qweight, scale
class HybridFP8UnquantLoader(WeightsLoader):
"""Weight loader that loads FP8 and unquantized Torch tensors."""
def __init__(self, activation_scale_ub: Optional[float], to_fp8: bool):
self.activation_scale_ub = activation_scale_ub
self.to_fp8 = to_fp8
def get_weights(self, weights: "Weights", prefix: str):
w = weights.get_tensor(f"{prefix}.weight")
if w.dtype == torch.float8_e4m3fn:
# FP8 branch
scale = weights.get_tensor(
f"{prefix}.weight_scale", to_dtype=False
).reshape(-1)
return Fp8Weight(
weight=w,
weight_scale=scale,
activation_scale_ub=self.activation_scale_ub,
dtype=weights.dtype,
)
if self.to_fp8:
return Fp8Weight(weight=w, dtype=weights.dtype)
return UnquantizedWeight(w)
def get_weights_col_packed(
self,
weights: Weights,
prefix: str,
block_sizes: Union[int, List[int]],
):
w = weights.get_packed_sharded(
f"{prefix}.weight", dim=0, block_sizes=block_sizes
)
if w.dtype == torch.float8_e4m3fn:
# FP8 branch
scale = weights.get_packed_sharded(
f"{prefix}.weight_scale", dim=0, block_sizes=block_sizes, to_dtype=False
).reshape(-1)
return Fp8Weight(
weight=w,
weight_scale=scale,
activation_scale_ub=self.activation_scale_ub,
dtype=weights.dtype,
)
if self.to_fp8:
return Fp8Weight(weight=w, dtype=weights.dtype)
return UnquantizedWeight(w)
def get_multi_weights_col(self, weights: "Weights", prefixes: List[str], dim: int):
# FIXME: Force to_device to false as fp8 weights do not support torch.cat on device yet
w = [
weights.get_sharded(f"{p}.weight", dim=0, to_device=False) for p in prefixes
]
# Concat then send to the device
w = torch.cat(w, dim=dim).to(weights.device)
# FP8 branch
if w.dtype == torch.float8_e4m3fn:
scale = [
weights.get_sharded(f"{p}.weight_scale", dim=0, to_dtype=False)
for p in prefixes
]
scale = torch.cat(scale, dim=0).reshape(-1)
return Fp8Weight(
weight=w,
weight_scale=scale,
activation_scale_ub=self.activation_scale_ub,
dtype=weights.dtype,
)
if self.to_fp8:
return Fp8Weight(weight=w, dtype=weights.dtype)
return UnquantizedWeight(w)
def get_weights_row(self, weights: "Weights", prefix: str):
w = weights.get_sharded(f"{prefix}.weight", dim=1)
# FP8 branch
if w.dtype == torch.float8_e4m3fn:
scale = weights.get_tensor(
f"{prefix}.weight_scale", to_dtype=False
).reshape(-1)
return Fp8Weight(
weight=w,
weight_scale=scale,
activation_scale_ub=self.activation_scale_ub,
dtype=weights.dtype,
)
if self.to_fp8:
return Fp8Weight(weight=w, dtype=weights.dtype)
return UnquantizedWeight(w)
@dataclass
class Fp8Weight(Weight):
weight: torch.Tensor
dtype: torch.dtype
weight_scale: Optional[torch.Tensor] = None
activation_scale_ub: Optional[float] = None
def get_linear(self, bias: torch.Tensor):
if self.weight_scale is None:
return get_fp8_linear().from_unquant(self.weight, bias, self.dtype)
return get_fp8_linear().from_fp8(
self.weight, self.weight_scale, self.activation_scale_ub, bias, self.dtype
)
class Fp8Linear(torch.nn.Module):
def __init__(
self,
qweight,
scale,
scale_upper_bound,
bias,
dtype,
) -> None:
super().__init__()
if FBGEMM_MM_AVAILABLE:
log_once(logger.info, "Using FBGEMM fp8 optimized kernels")
self.dtype = dtype
self.qweight = qweight
self.scale = scale
self.scale_upper_bound = (
torch.tensor(
[scale_upper_bound], dtype=torch.float32, device=qweight.device
)
if scale_upper_bound is not None
else None
)
self.bias = bias if bias is not None else None
@classmethod
def from_unquant(cls, weight, bias, dtype):
qweight, scale = fp8_quantize(weight, scalar=not FBGEMM_MM_AVAILABLE)
return cls(
qweight=qweight, scale=scale, scale_upper_bound=None, bias=bias, dtype=dtype
)
@classmethod
def from_fp8(cls, weight, scale, input_scale, bias, dtype):
return cls(
qweight=weight,
scale=scale,
scale_upper_bound=input_scale,
bias=bias,
dtype=dtype,
)
def forward(self, input: torch.Tensor) -> torch.Tensor:
if FBGEMM_MM_AVAILABLE:
qinput, scale = fp8_quantize(
input, scale_upper_bound=self.scale_upper_bound
)
y = torch.ops.fbgemm.f8f8bf16_rowwise(
qinput,
self.qweight,
scale,
self.scale,
use_fast_accum=True,
bias=self.bias,
)
return y.to(self.dtype)
qinput, scale = fp8_quantize(input, scalar=True)
output, _ = torch._scaled_mm(
qinput,
self.qweight.t(),
out_dtype=self.dtype,
scale_a=scale,
scale_b=self.scale,
bias=self.bias,
)
return output