hf_text-generation-inference/router/src/server.rs

1900 lines
69 KiB
Rust

/// HTTP Server logic
use crate::config::Config;
use crate::infer::v2::SchedulerV2;
use crate::infer::v3::SchedulerV3;
use crate::infer::{HealthCheck, Scheduler};
use crate::infer::{Infer, InferError, InferResponse, InferStreamResponse, ToolGrammar};
use crate::validation::ValidationError;
use crate::{
BestOfSequence, Details, ErrorResponse, FinishReason, GenerateParameters, GenerateRequest,
GenerateResponse, GrammarType, HubModelInfo, HubProcessorConfig, HubTokenizerConfig, Info,
Message, PrefillToken, SimpleToken, StreamDetails, StreamResponse, Token, TokenizeResponse,
Usage, Validation,
};
use crate::{
ChatCompletion, ChatCompletionChoice, ChatCompletionChunk, ChatCompletionComplete,
ChatCompletionDelta, ChatCompletionLogprob, ChatCompletionLogprobs, ChatCompletionTopLogprob,
ChatRequest, CompatGenerateRequest, Completion, CompletionComplete, CompletionCompleteChunk,
CompletionRequest, DeltaToolCall, Function, Tool, VertexRequest, VertexResponse,
};
use crate::{FunctionDefinition, ToolCall, ToolType};
use async_stream::__private::AsyncStream;
use axum::extract::Extension;
use axum::http::{HeaderMap, Method, StatusCode};
use axum::response::sse::{Event, KeepAlive, Sse};
use axum::response::{IntoResponse, Response};
use axum::routing::{get, post};
use axum::{http, Json, Router};
use axum_tracing_opentelemetry::middleware::OtelAxumLayer;
use futures::stream::StreamExt;
use futures::stream::{FuturesOrdered, FuturesUnordered};
use futures::Stream;
use futures::TryStreamExt;
use metrics_exporter_prometheus::{Matcher, PrometheusBuilder, PrometheusHandle};
use serde_json::Value;
use std::convert::Infallible;
use std::net::SocketAddr;
use std::sync::atomic::AtomicBool;
use std::sync::Arc;
use text_generation_client::{v2, v3, ClientError, ShardInfo};
use thiserror::Error;
use tokenizers::Tokenizer;
use tokio::select;
use tokio::signal;
use tokio::sync::oneshot;
use tokio::time::Instant;
use tower_http::cors::{AllowOrigin, CorsLayer};
use tracing::{info_span, instrument, Instrument};
use utoipa::OpenApi;
use utoipa_swagger_ui::SwaggerUi;
/// Generate tokens if `stream == false` or a stream of token if `stream == true`
#[utoipa::path(
post,
tag = "Text Generation Inference",
path = "/",
request_body = CompatGenerateRequest,
responses(
(status = 200, description = "Generated Text",
content(
("application/json" = GenerateResponse),
("text/event-stream" = StreamResponse),
)),
(status = 424, description = "Generation Error", body = ErrorResponse,
example = json ! ({"error": "Request failed during generation"})),
(status = 429, description = "Model is overloaded", body = ErrorResponse,
example = json ! ({"error": "Model is overloaded"})),
(status = 422, description = "Input validation error", body = ErrorResponse,
example = json ! ({"error": "Input validation error"})),
(status = 500, description = "Incomplete generation", body = ErrorResponse,
example = json ! ({"error": "Incomplete generation"})),
)
)]
#[instrument(skip(infer, req))]
async fn compat_generate(
Extension(default_return_full_text): Extension<bool>,
infer: Extension<Infer>,
compute_type: Extension<ComputeType>,
Json(mut req): Json<CompatGenerateRequest>,
) -> Result<Response, (StatusCode, Json<ErrorResponse>)> {
// default return_full_text given the pipeline_tag
if req.parameters.return_full_text.is_none() {
req.parameters.return_full_text = Some(default_return_full_text)
}
// switch on stream
if req.stream {
Ok(generate_stream(infer, compute_type, Json(req.into()))
.await
.into_response())
} else {
let (headers, Json(generation)) = generate(infer, compute_type, Json(req.into())).await?;
// wrap generation inside a Vec to match api-inference
Ok((headers, Json(vec![generation])).into_response())
}
}
/// Text Generation Inference endpoint info
#[utoipa::path(
get,
tag = "Text Generation Inference",
path = "/info",
responses((status = 200, description = "Served model info", body = Info))
)]
#[instrument]
async fn get_model_info(info: Extension<Info>) -> Json<Info> {
Json(info.0)
}
#[utoipa::path(
get,
tag = "Text Generation Inference",
path = "/health",
responses(
(status = 200, description = "Everything is working fine"),
(status = 503, description = "Text generation inference is down", body = ErrorResponse,
example = json ! ({"error": "unhealthy", "error_type": "healthcheck"})),
)
)]
#[instrument(skip(health))]
/// Health check method
async fn health(
mut health: Extension<HealthCheck>,
) -> Result<(), (StatusCode, Json<ErrorResponse>)> {
match health.check().await {
true => Ok(()),
false => Err((
StatusCode::SERVICE_UNAVAILABLE,
Json(ErrorResponse {
error: "unhealthy".to_string(),
error_type: "healthcheck".to_string(),
}),
)),
}
}
/// Generate tokens
#[utoipa::path(
post,
tag = "Text Generation Inference",
path = "/generate",
request_body = GenerateRequest,
responses(
(status = 200, description = "Generated Text", body = GenerateResponse),
(status = 424, description = "Generation Error", body = ErrorResponse,
example = json ! ({"error": "Request failed during generation"})),
(status = 429, description = "Model is overloaded", body = ErrorResponse,
example = json ! ({"error": "Model is overloaded"})),
(status = 422, description = "Input validation error", body = ErrorResponse,
example = json ! ({"error": "Input validation error"})),
(status = 500, description = "Incomplete generation", body = ErrorResponse,
example = json ! ({"error": "Incomplete generation"})),
)
)]
#[instrument(
skip_all,
fields(
parameters = ? req.parameters,
total_time,
validation_time,
queue_time,
inference_time,
time_per_token,
seed,
)
)]
async fn generate(
infer: Extension<Infer>,
Extension(ComputeType(compute_type)): Extension<ComputeType>,
Json(req): Json<GenerateRequest>,
) -> Result<(HeaderMap, Json<GenerateResponse>), (StatusCode, Json<ErrorResponse>)> {
let span = tracing::Span::current();
generate_internal(infer, ComputeType(compute_type), Json(req), span).await
}
async fn generate_internal(
infer: Extension<Infer>,
ComputeType(compute_type): ComputeType,
Json(req): Json<GenerateRequest>,
span: tracing::Span,
) -> Result<(HeaderMap, Json<GenerateResponse>), (StatusCode, Json<ErrorResponse>)> {
let start_time = Instant::now();
metrics::increment_counter!("tgi_request_count");
// Do not long ultra long inputs, like image payloads.
tracing::debug!("Input: {}", &req.inputs[..1000.min(req.inputs.len())]);
let compute_characters = req.inputs.chars().count();
let mut add_prompt = None;
if req.parameters.return_full_text.unwrap_or(false) {
add_prompt = Some(req.inputs.clone());
}
let details: bool = req.parameters.details || req.parameters.decoder_input_details;
// Inference
let (response, best_of_responses) = match req.parameters.best_of {
Some(best_of) if best_of > 1 => {
let (response, best_of_responses) = infer.generate_best_of(req, best_of).await?;
(response, Some(best_of_responses))
}
_ => (infer.generate(req).await?, None),
};
// Token details
let input_length = response._input_length;
let details = match details {
true => {
// convert best_of_responses
let best_of_sequences = best_of_responses.map(|responses: Vec<InferResponse>| {
responses
.into_iter()
.map(|response: InferResponse| {
// Add prompt if return_full_text
let mut output_text = response.generated_text.text;
if let Some(prompt) = &add_prompt {
output_text = prompt.clone() + &output_text;
}
BestOfSequence {
generated_text: output_text,
finish_reason: response.generated_text.finish_reason,
generated_tokens: response.generated_text.generated_tokens,
prefill: response.prefill,
tokens: response.tokens,
top_tokens: response.top_tokens,
seed: response.generated_text.seed,
}
})
.collect()
});
Some(Details {
finish_reason: response.generated_text.finish_reason,
generated_tokens: response.generated_text.generated_tokens,
prefill: response.prefill,
tokens: response.tokens,
seed: response.generated_text.seed,
best_of_sequences,
top_tokens: response.top_tokens,
})
}
false => None,
};
// Timings
let total_time = start_time.elapsed();
let validation_time = response.queued - start_time;
let queue_time = response.start - response.queued;
let inference_time = Instant::now() - response.start;
let time_per_token = inference_time / response.generated_text.generated_tokens;
// Tracing metadata
span.record("total_time", format!("{total_time:?}"));
span.record("validation_time", format!("{validation_time:?}"));
span.record("queue_time", format!("{queue_time:?}"));
span.record("inference_time", format!("{inference_time:?}"));
span.record("time_per_token", format!("{time_per_token:?}"));
span.record("seed", format!("{:?}", response.generated_text.seed));
// Headers
let mut headers = HeaderMap::new();
headers.insert("x-compute-type", compute_type.parse().unwrap());
headers.insert(
"x-compute-time",
total_time.as_secs_f64().to_string().parse().unwrap(),
);
headers.insert(
"x-compute-characters",
compute_characters.to_string().parse().unwrap(),
);
headers.insert(
"x-total-time",
total_time.as_millis().to_string().parse().unwrap(),
);
headers.insert(
"x-validation-time",
validation_time.as_millis().to_string().parse().unwrap(),
);
headers.insert(
"x-queue-time",
queue_time.as_millis().to_string().parse().unwrap(),
);
headers.insert(
"x-inference-time",
inference_time.as_millis().to_string().parse().unwrap(),
);
headers.insert(
"x-time-per-token",
time_per_token.as_millis().to_string().parse().unwrap(),
);
headers.insert("x-prompt-tokens", input_length.into());
headers.insert(
"x-generated-tokens",
response.generated_text.generated_tokens.into(),
);
// Metrics
metrics::increment_counter!("tgi_request_success");
metrics::histogram!("tgi_request_duration", total_time.as_secs_f64());
metrics::histogram!(
"tgi_request_validation_duration",
validation_time.as_secs_f64()
);
metrics::histogram!("tgi_request_queue_duration", queue_time.as_secs_f64());
metrics::histogram!(
"tgi_request_inference_duration",
inference_time.as_secs_f64()
);
metrics::histogram!(
"tgi_request_mean_time_per_token_duration",
time_per_token.as_secs_f64()
);
metrics::histogram!(
"tgi_request_generated_tokens",
response.generated_text.generated_tokens as f64
);
// Send response
let mut output_text = response.generated_text.text;
if let Some(prompt) = add_prompt {
output_text = prompt + &output_text;
}
tracing::debug!("Output: {}", output_text);
tracing::info!("Success");
let response = GenerateResponse {
generated_text: output_text,
details,
};
Ok((headers, Json(response)))
}
/// Generate a stream of token using Server-Sent Events
#[utoipa::path(
post,
tag = "Text Generation Inference",
path = "/generate_stream",
request_body = GenerateRequest,
responses(
(status = 200, description = "Generated Text", body = StreamResponse,
content_type = "text/event-stream"),
(status = 424, description = "Generation Error", body = ErrorResponse,
example = json ! ({"error": "Request failed during generation"}),
content_type = "text/event-stream"),
(status = 429, description = "Model is overloaded", body = ErrorResponse,
example = json ! ({"error": "Model is overloaded"}),
content_type = "text/event-stream"),
(status = 422, description = "Input validation error", body = ErrorResponse,
example = json ! ({"error": "Input validation error"}),
content_type = "text/event-stream"),
(status = 500, description = "Incomplete generation", body = ErrorResponse,
example = json ! ({"error": "Incomplete generation"}),
content_type = "text/event-stream"),
)
)]
#[instrument(
skip_all,
fields(
parameters = ? req.parameters,
total_time,
validation_time,
queue_time,
inference_time,
time_per_token,
seed,
)
)]
async fn generate_stream(
Extension(infer): Extension<Infer>,
Extension(compute_type): Extension<ComputeType>,
Json(req): Json<GenerateRequest>,
) -> (
HeaderMap,
Sse<impl Stream<Item = Result<Event, Infallible>>>,
) {
let span = tracing::Span::current();
let on_message_callback = |stream_token: StreamResponse| {
let event = Event::default();
event.json_data(stream_token).unwrap()
};
let (headers, response_stream) =
generate_stream_internal(infer, compute_type, Json(req), on_message_callback, span).await;
let sse = Sse::new(response_stream).keep_alive(KeepAlive::default());
(headers, sse)
}
async fn generate_stream_internal(
infer: Infer,
ComputeType(compute_type): ComputeType,
Json(req): Json<GenerateRequest>,
on_message_callback: impl Fn(StreamResponse) -> Event,
span: tracing::Span,
) -> (HeaderMap, impl Stream<Item = Result<Event, Infallible>>) {
let start_time = Instant::now();
metrics::increment_counter!("tgi_request_count");
tracing::debug!("Input: {}", req.inputs);
let compute_characters = req.inputs.chars().count();
let mut headers = HeaderMap::new();
headers.insert("x-compute-type", compute_type.parse().unwrap());
headers.insert(
"x-compute-characters",
compute_characters.to_string().parse().unwrap(),
);
headers.insert("X-Accel-Buffering", "no".parse().unwrap());
let stream = async_stream::stream! {
// Inference
let mut end_reached = false;
let mut error = false;
let mut add_prompt = None;
if req.parameters.return_full_text.unwrap_or(false) {
add_prompt = Some(req.inputs.clone());
}
let details = req.parameters.details;
let best_of = req.parameters.best_of.unwrap_or(1);
if best_of != 1 {
let err = InferError::from(ValidationError::BestOfStream);
metrics::increment_counter!("tgi_request_failure", "err" => "validation");
tracing::error!("{err}");
yield Ok(Event::from(err));
} else if req.parameters.decoder_input_details {
let err = InferError::from(ValidationError::PrefillDetailsStream);
metrics::increment_counter!("tgi_request_failure", "err" => "validation");
tracing::error!("{err}");
yield Ok(Event::from(err));
} else {
match infer.generate_stream(req).instrument(info_span!(parent: &span, "async_stream")).await {
// Keep permit as long as generate_stream lives
Ok((_permit, _input_length, mut response_stream)) => {
let mut index = 0;
// Server-Sent Event stream
while let Some(response) = response_stream.next().await {
index += 1;
match response {
Ok(response) => {
match response {
// Prefill is ignored
InferStreamResponse::Prefill(_) => {}
// Yield event for every new token
InferStreamResponse::Intermediate{
token,
top_tokens,
} => {
tracing::debug!(parent: &span, "Token: {:?}", token);
// StreamResponse
let stream_token = StreamResponse {
index,
token,
top_tokens,
generated_text: None,
details: None,
};
let event = on_message_callback(stream_token);
yield Ok(event);
}
// Yield event for last token and compute timings
InferStreamResponse::End {
token,
generated_text,
start,
queued,
top_tokens,
} => {
// Token details
let details = match details {
true => Some(StreamDetails {
finish_reason: generated_text.finish_reason,
generated_tokens: generated_text.generated_tokens,
seed: generated_text.seed,
}),
false => None,
};
// Timings
let total_time = start_time.elapsed();
let validation_time = queued - start_time;
let queue_time = start - queued;
let inference_time = Instant::now() - start;
let time_per_token = inference_time / generated_text.generated_tokens;
// Tracing metadata
span.record("total_time", format!("{total_time:?}"));
span.record("validation_time", format!("{validation_time:?}"));
span.record("queue_time", format!("{queue_time:?}"));
span.record("inference_time", format!("{inference_time:?}"));
span.record("time_per_token", format!("{time_per_token:?}"));
span.record("seed", format!("{:?}", generated_text.seed));
// Metrics
metrics::increment_counter!("tgi_request_success");
metrics::histogram!("tgi_request_duration", total_time.as_secs_f64());
metrics::histogram!("tgi_request_validation_duration", validation_time.as_secs_f64());
metrics::histogram!("tgi_request_queue_duration", queue_time.as_secs_f64());
metrics::histogram!("tgi_request_inference_duration", inference_time.as_secs_f64());
metrics::histogram!("tgi_request_mean_time_per_token_duration", time_per_token.as_secs_f64());
metrics::histogram!("tgi_request_generated_tokens", generated_text.generated_tokens as f64);
// StreamResponse
end_reached = true;
let mut output_text = generated_text.text;
if let Some(prompt) = add_prompt {
output_text = prompt + &output_text;
}
tracing::debug!(parent: &span, "Output: {}", output_text);
tracing::info!(parent: &span, "Success");
let stream_token = StreamResponse {
index,
token,
top_tokens,
generated_text: Some(output_text),
details
};
let event = on_message_callback(stream_token);
yield Ok(event);
break;
}
}
}
// yield error
Err(err) => {
error = true;
yield Ok(Event::from(err));
break;
}
}
}
},
// yield error
Err(err) => {
error = true;
yield Ok(Event::from(err));
}
}
// Check if generation reached the end
// Skip if we already sent an error
if !end_reached && !error {
let err = InferError::IncompleteGeneration;
metrics::increment_counter!("tgi_request_failure", "err" => "incomplete");
tracing::error!("{err}");
yield Ok(Event::from(err));
}
}
};
(headers, stream)
}
/// Generate tokens
#[utoipa::path(
post,
tag = "Text Generation Inference",
path = "/v1/completions",
request_body = CompletionRequest,
responses(
(status = 200, description = "Generated Chat Completion",
content(
("application/json" = Completion),
("text/event-stream" = CompletionCompleteChunk),
)),
(status = 424, description = "Generation Error", body = ErrorResponse,
example = json ! ({"error": "Request failed during generation"})),
(status = 429, description = "Model is overloaded", body = ErrorResponse,
example = json ! ({"error": "Model is overloaded"})),
(status = 422, description = "Input validation error", body = ErrorResponse,
example = json ! ({"error": "Input validation error"})),
(status = 500, description = "Incomplete generation", body = ErrorResponse,
example = json ! ({"error": "Incomplete generation"})),
)
)]
#[instrument(
skip_all,
fields(
// parameters = ? req.parameters,
total_time,
validation_time,
queue_time,
inference_time,
time_per_token,
seed,
)
)]
async fn completions(
Extension(infer): Extension<Infer>,
Extension(compute_type): Extension<ComputeType>,
Extension(info): Extension<Info>,
Json(req): Json<CompletionRequest>,
) -> Result<Response, (StatusCode, Json<ErrorResponse>)> {
let span = tracing::Span::current();
metrics::increment_counter!("tgi_request_count");
let CompletionRequest {
max_tokens,
seed,
stop,
stream,
temperature,
..
} = req;
let max_new_tokens = max_tokens.or(Some(100));
let stop = stop.unwrap_or_default();
// enable greedy only when temperature is 0
let (do_sample, temperature) = match temperature {
Some(temperature) if temperature == 0.0 => (false, None),
other => (true, other),
};
// if suffix is present throw an error
if req.suffix.is_some() {
metrics::increment_counter!("tgi_request_failure", "err" => "validation");
return Err((
StatusCode::UNPROCESSABLE_ENTITY,
Json(ErrorResponse {
error: "Suffix is not supported and can be achieved by preprocessing the prompt."
.to_string(),
error_type: "suffix not supported".to_string(),
}),
));
}
if req.prompt.len() > info.max_client_batch_size {
metrics::increment_counter!("tgi_request_failure", "err" => "validation");
return Err((
StatusCode::UNPROCESSABLE_ENTITY,
Json(ErrorResponse {
error: format!(
"Number of prompts exceeds the maximum allowed batch size of {}",
info.max_client_batch_size
),
error_type: "batch size exceeded".to_string(),
}),
));
}
let generate_requests: Vec<GenerateRequest> = req
.prompt
.iter()
.map(|prompt| GenerateRequest {
inputs: prompt.to_string(),
parameters: GenerateParameters {
best_of: None,
temperature,
repetition_penalty: req.repetition_penalty,
frequency_penalty: req.frequency_penalty,
top_k: None,
top_p: req.top_p,
typical_p: None,
do_sample,
max_new_tokens,
return_full_text: None,
stop: stop.clone(),
truncate: None,
watermark: false,
details: true,
decoder_input_details: !stream,
seed,
top_n_tokens: None,
grammar: None,
},
})
.collect();
let mut x_compute_type = None;
let mut x_compute_characters = 0u32;
let mut x_accel_buffering = None;
if stream {
let mut response_streams = FuturesOrdered::new();
for (index, generate_request) in generate_requests.into_iter().enumerate() {
let model_id = info.model_id.clone();
let system_fingerprint =
format!("{}-{}", info.version, info.docker_label.unwrap_or("native"));
let infer_clone = infer.clone();
let compute_type_clone = compute_type.clone();
let span_clone = span.clone();
// Create a future for each generate_stream_internal call.
let generate_future = async move {
let on_message_callback = move |stream_token: StreamResponse| {
let event = Event::default();
let current_time = std::time::SystemTime::now()
.duration_since(std::time::UNIX_EPOCH)
.unwrap_or_else(|_| std::time::Duration::from_secs(0))
.as_secs();
event
.json_data(CompletionCompleteChunk {
id: "".to_string(),
object: "text_completion".to_string(),
created: current_time,
choices: vec![CompletionComplete {
finish_reason: "".to_string(),
index: index as u32,
logprobs: None,
text: stream_token.token.text,
}],
model: model_id.clone(),
system_fingerprint: system_fingerprint.clone(),
})
.unwrap_or_else(|_e| Event::default())
};
let (header_tx, header_rx) = oneshot::channel();
let (sse_tx, sse_rx) = tokio::sync::mpsc::unbounded_channel();
tokio::spawn(async move {
let (header_map, sse) = generate_stream_internal(
infer_clone.clone(),
compute_type_clone.clone(),
Json(generate_request),
on_message_callback,
span_clone.clone(),
)
.await;
// send and dont wait for response
let _ = header_tx.send(header_map);
// pin an emit messages to the sse_tx
let mut sse = Box::pin(sse);
while let Some(event) = sse.next().await {
if sse_tx.send(event).is_err() {
tracing::error!("Failed to send event. Receiver dropped.");
break;
}
}
});
(header_rx, sse_rx)
};
response_streams.push_back(generate_future);
}
let mut all_rxs = vec![];
while let Some((header_rx, sse_rx)) = response_streams.next().await {
all_rxs.push(sse_rx);
// get the headers from the first response of each stream
let headers = header_rx.await.map_err(|e| {
tracing::error!("Failed to get headers: {:?}", e);
(
StatusCode::INTERNAL_SERVER_ERROR,
Json(ErrorResponse {
error: "Failed to get headers".to_string(),
error_type: "headers".to_string(),
}),
)
})?;
if x_compute_type.is_none() {
x_compute_type = headers
.get("x-compute-type")
.and_then(|v| v.to_str().ok())
.map(|v| v.to_string());
x_accel_buffering = headers
.get("x-accel-buffering")
.and_then(|v| v.to_str().ok())
.map(|v| v.to_string());
}
x_compute_characters += headers
.get("x-compute-characters")
.and_then(|v| v.to_str().ok())
.and_then(|v| v.parse().ok())
.unwrap_or(0);
}
let mut headers = HeaderMap::new();
if let Some(x_compute_type) = x_compute_type {
headers.insert("x-compute-type", x_compute_type.parse().unwrap());
}
headers.insert("x-compute-characters", x_compute_characters.into());
if let Some(x_accel_buffering) = x_accel_buffering {
headers.insert("x-accel-buffering", x_accel_buffering.parse().unwrap());
}
// now sink the sse streams into a single stream and remove the ones that are done
let stream: AsyncStream<Result<Event, Infallible>, _> = async_stream::stream! {
loop {
let mut i = 0;
while i < all_rxs.len() {
let rx = &mut all_rxs[i];
select! {
Some(event) = rx.recv() => {
yield event;
}
else => {
all_rxs.remove(i);
continue; // skip the increment to handle the next element at the same index
}
}
i += 1; // only increment when no element was removed
}
if all_rxs.is_empty() {
break;
}
}
};
let sse = Sse::new(stream).keep_alive(KeepAlive::default());
Ok((headers, sse).into_response())
} else {
let current_time = std::time::SystemTime::now()
.duration_since(std::time::UNIX_EPOCH)
.unwrap_or_else(|_| std::time::Duration::from_secs(0))
.as_secs();
let responses = FuturesUnordered::new();
for (index, generate_request) in generate_requests.into_iter().enumerate() {
let infer_clone = infer.clone();
let compute_type_clone = compute_type.clone();
let span_clone = span.clone();
let response_future = async move {
let result = generate_internal(
Extension(infer_clone),
compute_type_clone,
Json(generate_request),
span_clone,
)
.await;
result.map(|(headers, generation)| (index, headers, generation))
};
responses.push(response_future);
}
let generate_responses = responses.try_collect::<Vec<_>>().await?;
let mut prompt_tokens = 0u32;
let mut completion_tokens = 0u32;
let mut total_tokens = 0u32;
let mut x_compute_time = 0u32;
let mut x_total_time = 0u32;
let mut x_validation_time = 0u32;
let mut x_queue_time = 0u32;
let mut x_inference_time = 0u32;
let mut x_time_per_token = 0u32;
let mut x_prompt_tokens = 0u32;
let mut x_generated_tokens = 0u32;
let choices = generate_responses
.into_iter()
.map(|(index, headers, Json(generation))| {
let details = generation.details.ok_or((
// this should never happen but handle if details are missing unexpectedly
StatusCode::INTERNAL_SERVER_ERROR,
Json(ErrorResponse {
error: "No details in generation".to_string(),
error_type: "no details".to_string(),
}),
))?;
if x_compute_type.is_none() {
x_compute_type = headers
.get("x-compute-type")
.and_then(|v| v.to_str().ok())
.map(|v| v.to_string());
}
// accumulate headers and usage from each response
x_compute_time += headers
.get("x-compute-time")
.and_then(|v| v.to_str().ok()?.parse().ok())
.unwrap_or(0);
x_compute_characters += headers
.get("x-compute-characters")
.and_then(|v| v.to_str().ok()?.parse().ok())
.unwrap_or(0);
x_total_time += headers
.get("x-total-time")
.and_then(|v| v.to_str().ok()?.parse().ok())
.unwrap_or(0);
x_validation_time += headers
.get("x-validation-time")
.and_then(|v| v.to_str().ok()?.parse().ok())
.unwrap_or(0);
x_queue_time += headers
.get("x-queue-time")
.and_then(|v| v.to_str().ok()?.parse().ok())
.unwrap_or(0);
x_inference_time += headers
.get("x-inference-time")
.and_then(|v| v.to_str().ok()?.parse().ok())
.unwrap_or(0);
x_time_per_token += headers
.get("x-time-per-token")
.and_then(|v| v.to_str().ok()?.parse().ok())
.unwrap_or(0);
x_prompt_tokens += headers
.get("x-prompt-tokens")
.and_then(|v| v.to_str().ok()?.parse().ok())
.unwrap_or(0);
x_generated_tokens += headers
.get("x-generated-tokens")
.and_then(|v| v.to_str().ok()?.parse().ok())
.unwrap_or(0);
prompt_tokens += details.prefill.len() as u32;
completion_tokens += details.generated_tokens;
total_tokens += details.prefill.len() as u32 + details.generated_tokens;
Ok(CompletionComplete {
finish_reason: details.finish_reason.to_string(),
index: index as u32,
logprobs: None,
text: generation.generated_text,
})
})
.collect::<Result<Vec<_>, _>>()
.map_err(|(status, Json(err))| (status, Json(err)))?;
let response = Completion {
id: "".to_string(),
object: "text_completion".to_string(),
created: current_time,
model: info.model_id.clone(),
system_fingerprint: format!(
"{}-{}",
info.version,
info.docker_label.unwrap_or("native")
),
choices,
usage: Usage {
prompt_tokens,
completion_tokens,
total_tokens,
},
};
// headers similar to `generate` but aggregated
let mut headers = HeaderMap::new();
if let Some(x_compute_type) = x_compute_type {
headers.insert("x-compute-type", x_compute_type.parse().unwrap());
}
headers.insert("x-compute-characters", x_compute_characters.into());
headers.insert("x-total-time", x_total_time.into());
headers.insert("x-validation-time", x_validation_time.into());
headers.insert("x-queue-time", x_queue_time.into());
headers.insert("x-inference-time", x_inference_time.into());
headers.insert("x-time-per-token", x_time_per_token.into());
headers.insert("x-prompt-tokens", x_prompt_tokens.into());
headers.insert("x-generated-tokens", x_generated_tokens.into());
if let Some(x_accel_buffering) = x_accel_buffering {
headers.insert("x-accel-buffering", x_accel_buffering.parse().unwrap());
}
Ok((headers, Json(response)).into_response())
}
}
/// Generate tokens
#[utoipa::path(
post,
tag = "Text Generation Inference",
path = "/v1/chat/completions",
request_body = ChatRequest,
responses(
(status = 200, description = "Generated Chat Completion",
content(
("application/json" = ChatCompletion),
("text/event-stream" = ChatCompletionChunk),
)),
(status = 424, description = "Generation Error", body = ErrorResponse,
example = json ! ({"error": "Request failed during generation"})),
(status = 429, description = "Model is overloaded", body = ErrorResponse,
example = json ! ({"error": "Model is overloaded"})),
(status = 422, description = "Input validation error", body = ErrorResponse,
example = json ! ({"error": "Input validation error"})),
(status = 500, description = "Incomplete generation", body = ErrorResponse,
example = json ! ({"error": "Incomplete generation"})),
)
)]
#[instrument(
skip_all,
fields(
// parameters = ? req.parameters,
total_time,
validation_time,
queue_time,
inference_time,
time_per_token,
seed,
)
)]
async fn chat_completions(
Extension(infer): Extension<Infer>,
Extension(compute_type): Extension<ComputeType>,
Extension(info): Extension<Info>,
Json(req): Json<ChatRequest>,
) -> Result<Response, (StatusCode, Json<ErrorResponse>)> {
let span = tracing::Span::current();
metrics::increment_counter!("tgi_request_count");
let ChatRequest {
logprobs,
max_tokens,
messages,
presence_penalty,
seed,
stop,
stream,
tools,
tool_choice,
tool_prompt,
temperature,
..
} = req;
let repetition_penalty = presence_penalty.map(|x| x + 2.0);
let max_new_tokens = max_tokens.or(Some(100));
let logprobs = logprobs.unwrap_or(false);
let tool_prompt = tool_prompt.unwrap_or_default();
let stop = stop.unwrap_or_default();
// enable greedy only when temperature is 0
let (do_sample, temperature) = match temperature {
Some(temperature) if temperature == 0.0 => (false, None),
other => (true, other),
};
// extract tool grammar if present
let tool_grammar = match ToolGrammar::apply(tools, tool_choice) {
Ok(grammar) => grammar,
Err(err) => {
metrics::increment_counter!("tgi_request_failure", "err" => "validation");
tracing::error!("{err}");
return Err((
StatusCode::UNPROCESSABLE_ENTITY,
Json(ErrorResponse {
error: err.to_string(),
error_type: err.error_type().to_string(),
}),
));
}
};
let grammar_with_prompt = tool_grammar
.as_ref()
.map(|t| (GrammarType::Json(serde_json::json!(t)), tool_prompt));
let typed_grammar = grammar_with_prompt
.as_ref()
.map(|(grammar, _)| grammar.clone());
// apply chat template to flatten the request into a single input
let inputs = match infer.apply_chat_template(messages, grammar_with_prompt) {
Ok(inputs) => inputs,
Err(err) => {
metrics::increment_counter!("tgi_request_failure", "err" => "validation");
tracing::error!("{err}");
return Err((
StatusCode::UNPROCESSABLE_ENTITY,
Json(ErrorResponse {
error: err.to_string(),
error_type: err.error_type().to_string(),
}),
));
}
};
// build the request passing some parameters
let generate_request = GenerateRequest {
inputs: inputs.to_string(),
parameters: GenerateParameters {
best_of: None,
temperature,
repetition_penalty,
frequency_penalty: req.frequency_penalty,
top_k: None,
top_p: req.top_p,
typical_p: None,
do_sample,
max_new_tokens,
return_full_text: None,
stop,
truncate: None,
watermark: false,
details: true,
decoder_input_details: !stream,
seed,
top_n_tokens: req.top_logprobs,
grammar: typed_grammar,
},
};
// static values that will be returned in all cases
let model_id = info.model_id.clone();
let system_fingerprint = format!("{}-{}", info.version, info.docker_label.unwrap_or("native"));
// switch on stream
if stream {
// pass this callback to the stream generation and build the required event structure
let on_message_callback = move |stream_token: StreamResponse| {
let event = Event::default();
let current_time = std::time::SystemTime::now()
.duration_since(std::time::UNIX_EPOCH)
.unwrap_or_else(|_| std::time::Duration::from_secs(0))
.as_secs();
let logprobs = logprobs.then(|| {
ChatCompletionLogprobs::from((stream_token.token.clone(), stream_token.top_tokens))
});
// replace the content with the tool calls if grammar is present
let (content, tool_calls) = if tool_grammar.is_some() {
(None, Some(vec![stream_token.token.text]))
} else {
let content = if !stream_token.token.special {
Some(stream_token.token.text)
} else {
None
};
(content, None)
};
event
.json_data(ChatCompletionChunk::new(
model_id.clone(),
system_fingerprint.clone(),
content,
tool_calls,
current_time,
logprobs,
stream_token.details.map(|d| d.finish_reason.to_string()),
))
.unwrap_or_else(|e| {
println!("Failed to serialize ChatCompletionChunk: {:?}", e);
Event::default()
})
};
let (headers, response_stream) = generate_stream_internal(
infer,
compute_type,
Json(generate_request),
on_message_callback,
span,
)
.await;
let sse = Sse::new(response_stream).keep_alive(KeepAlive::default());
Ok((headers, sse).into_response())
} else {
let (headers, Json(generation)) =
generate_internal(Extension(infer), compute_type, Json(generate_request), span).await?;
let current_time = std::time::SystemTime::now()
.duration_since(std::time::UNIX_EPOCH)
.unwrap_or_else(|_| std::time::Duration::from_secs(0))
.as_secs();
let (tool_calls, output) = if tool_grammar.is_some() {
// gen_text should be valid json
let gen_text_value: Value =
serde_json::from_str(&generation.generated_text).map_err(|e| {
(
StatusCode::UNPROCESSABLE_ENTITY,
Json(ErrorResponse {
error: e.to_string(),
error_type: "Input validation error".to_string(),
}),
)
})?;
let tool_calls = vec![ToolCall {
id: "0".to_string(),
r#type: "function".to_string(),
function: FunctionDefinition {
description: None,
name: gen_text_value
.get("function")
.and_then(|f| f.get("_name"))
.and_then(|name| name.as_str())
.unwrap_or("default_function_name")
.to_string(),
// Serialize the JSON object obtained from "function" to an escaped JSON string
arguments: gen_text_value
.get("function")
.map(|f| {
let mut f_cloned = f.clone();
if let Value::Object(ref mut props) = f_cloned {
props.remove("_name");
}
f_cloned
})
.unwrap_or_default(),
},
}];
(Some(tool_calls), None)
} else {
(None, Some(generation.generated_text))
};
// build the complete response object with the full text
let response = ChatCompletion::new(
model_id,
system_fingerprint,
output,
current_time,
generation.details.unwrap(),
logprobs,
tool_calls,
);
// wrap generation inside a Vec to match api-inference
Ok((headers, Json(response)).into_response())
}
}
/// Generate tokens from Vertex request
#[utoipa::path(
post,
tag = "Text Generation Inference",
path = "/vertex",
request_body = VertexRequest,
responses(
(status = 200, description = "Generated Text", body = VertexResponse),
(status = 424, description = "Generation Error", body = ErrorResponse,
example = json ! ({"error": "Request failed during generation"})),
(status = 429, description = "Model is overloaded", body = ErrorResponse,
example = json ! ({"error": "Model is overloaded"})),
(status = 422, description = "Input validation error", body = ErrorResponse,
example = json ! ({"error": "Input validation error"})),
(status = 500, description = "Incomplete generation", body = ErrorResponse,
example = json ! ({"error": "Incomplete generation"})),
)
)]
#[instrument(
skip_all,
fields(
total_time,
validation_time,
queue_time,
inference_time,
time_per_token,
seed,
)
)]
async fn vertex_compatibility(
Extension(infer): Extension<Infer>,
Extension(compute_type): Extension<ComputeType>,
Json(req): Json<VertexRequest>,
) -> Result<Response, (StatusCode, Json<ErrorResponse>)> {
let span = tracing::Span::current();
metrics::increment_counter!("tgi_request_count");
// check that theres at least one instance
if req.instances.is_empty() {
return Err((
StatusCode::UNPROCESSABLE_ENTITY,
Json(ErrorResponse {
error: "Input validation error".to_string(),
error_type: "Input validation error".to_string(),
}),
));
}
// Process all instances
let predictions = req
.instances
.iter()
.map(|instance| {
let generate_request = GenerateRequest {
inputs: instance.inputs.clone(),
parameters: GenerateParameters {
do_sample: true,
max_new_tokens: instance.parameters.as_ref().and_then(|p| p.max_new_tokens),
seed: instance.parameters.as_ref().and_then(|p| p.seed),
details: true,
decoder_input_details: true,
..Default::default()
},
};
async {
generate_internal(
Extension(infer.clone()),
compute_type.clone(),
Json(generate_request),
span.clone(),
)
.await
.map(|(_, Json(generation))| generation.generated_text)
.map_err(|_| {
(
StatusCode::INTERNAL_SERVER_ERROR,
Json(ErrorResponse {
error: "Incomplete generation".into(),
error_type: "Incomplete generation".into(),
}),
)
})
}
})
.collect::<FuturesUnordered<_>>()
.try_collect::<Vec<_>>()
.await?;
let response = VertexResponse { predictions };
Ok((HeaderMap::new(), Json(response)).into_response())
}
/// Tokenize inputs
#[utoipa::path(
post,
tag = "Text Generation Inference",
path = "/tokenize",
request_body = GenerateRequest,
responses(
(status = 200, description = "Tokenized ids", body = TokenizeResponse),
(status = 404, description = "No tokenizer found", body = ErrorResponse,
example = json ! ({"error": "No fast tokenizer available"})),
)
)]
#[instrument(skip_all)]
async fn tokenize(
Extension(infer): Extension<Infer>,
Json(req): Json<GenerateRequest>,
) -> Result<Json<TokenizeResponse>, (StatusCode, Json<ErrorResponse>)> {
let input = req.inputs.clone();
let encoding = infer.tokenize(req).await?;
if let Some(encoding) = encoding {
let tokens: Vec<SimpleToken> = encoding
.get_ids()
.iter()
.zip(encoding.get_offsets())
.map(|(&id, &(start, stop))| {
let text: String =
String::from_utf8_lossy(&input.as_bytes()[start..stop]).to_string();
SimpleToken {
id,
text,
start,
stop,
}
})
.collect();
Ok(Json(TokenizeResponse(tokens)))
} else {
Err((
StatusCode::NOT_FOUND,
Json(ErrorResponse {
error: "No fast tokenizer or tokenizer.json for this model".to_string(),
error_type: "no fast tokenizer".to_string(),
}),
))
}
}
/// Prometheus metrics scrape endpoint
#[utoipa::path(
get,
tag = "Text Generation Inference",
path = "/metrics",
responses((status = 200, description = "Prometheus Metrics", body = String))
)]
async fn metrics(prom_handle: Extension<PrometheusHandle>) -> String {
prom_handle.render()
}
#[derive(Clone, Debug)]
pub(crate) struct ComputeType(String);
/// Serving method
#[allow(clippy::too_many_arguments)]
pub async fn run(
master_shard_uds_path: String,
model_info: HubModelInfo,
compat_return_full_text: bool,
max_concurrent_requests: usize,
max_best_of: usize,
max_stop_sequences: usize,
max_top_n_tokens: u32,
max_input_tokens: usize,
max_total_tokens: usize,
waiting_served_ratio: f32,
max_batch_prefill_tokens: u32,
max_batch_total_tokens: Option<u32>,
max_waiting_tokens: usize,
max_batch_size: Option<usize>,
tokenizer: Option<Tokenizer>,
config: Option<Config>,
validation_workers: usize,
addr: SocketAddr,
allow_origin: Option<AllowOrigin>,
ngrok: bool,
_ngrok_authtoken: Option<String>,
_ngrok_edge: Option<String>,
tokenizer_config: HubTokenizerConfig,
processor_config: HubProcessorConfig,
messages_api_enabled: bool,
grammar_support: bool,
max_client_batch_size: usize,
) -> Result<(), WebServerError> {
// OpenAPI documentation
#[derive(OpenApi)]
#[openapi(
paths(
health,
get_model_info,
compat_generate,
generate,
generate_stream,
chat_completions,
completions,
tokenize,
metrics,
),
components(
schemas(
Info,
CompatGenerateRequest,
GenerateRequest,
GrammarType,
ChatRequest,
Message,
ChatCompletionComplete,
ChatCompletionChoice,
ChatCompletionDelta,
ChatCompletionChunk,
ChatCompletionLogprob,
ChatCompletionLogprobs,
ChatCompletionTopLogprob,
ChatCompletion,
CompletionRequest,
CompletionComplete,
CompletionCompleteChunk,
GenerateParameters,
PrefillToken,
Token,
GenerateResponse,
TokenizeResponse,
SimpleToken,
BestOfSequence,
Details,
FinishReason,
StreamResponse,
StreamDetails,
ErrorResponse,
GrammarType,
Usage,
DeltaToolCall,
ToolType,
Tool,
ToolCall,
Function,
FunctionDefinition,
)
),
tags(
(name = "Text Generation Inference", description = "Hugging Face Text Generation Inference API")
),
info(
title = "Text Generation Inference",
license(
name = "Apache 2.0",
url = "https://www.apache.org/licenses/LICENSE-2.0"
)
)
)]
struct ApiDoc;
// Create state
// Open connection, get model info and warmup
let (scheduler, health_ext, shard_info, max_batch_total_tokens): (
Arc<dyn Scheduler + Send + Sync>,
HealthCheck,
ShardInfo,
u32,
) = {
// Helper function to check both v2 and v3
let check_max_batch_total_tokens = |max_supported_batch_total_tokens: Option<u32>| {
match max_supported_batch_total_tokens {
// Older models do not support automatic max-batch-total-tokens
None => {
let max_batch_total_tokens = max_batch_total_tokens.unwrap_or(
16000.max((max_total_tokens as u32).max(max_batch_prefill_tokens)),
);
tracing::warn!("Model does not support automatic max batch total tokens");
Ok(max_batch_total_tokens)
}
// Flash attention models return their max supported total tokens
Some(max_supported_batch_total_tokens) => {
// Warn if user added his own max-batch-total-tokens as we will ignore it
if max_batch_total_tokens.is_some() {
tracing::warn!(
"`--max-batch-total-tokens` is deprecated for Flash \
Attention models."
);
tracing::warn!(
"Inferred max batch total tokens: {max_supported_batch_total_tokens}"
);
}
if max_total_tokens as u32 > max_supported_batch_total_tokens {
return Err(WebServerError::NotEnoughMemory(max_total_tokens));
}
Ok(max_supported_batch_total_tokens)
}
}
};
let generation_health = Arc::new(AtomicBool::new(false));
match v3::ShardedClient::connect_uds(master_shard_uds_path.clone()).await {
Ok(mut sharded_client) => {
// server is running on v3
// Clear the cache; useful if the webserver rebooted
sharded_client
.clear_cache(None)
.await
.map_err(WebServerError::Cache)?;
// Get info from the shard
let shard_info = sharded_client.info().await.map_err(WebServerError::Info)?;
// Warmup model
tracing::info!("Warming up model");
let max_batch_total_tokens = check_max_batch_total_tokens(
sharded_client
.warmup(
max_input_tokens as u32,
max_batch_prefill_tokens,
max_total_tokens as u32,
max_batch_size,
)
.await
.map_err(WebServerError::Warmup)?,
)?;
let health_ext =
HealthCheck::new(Arc::new(sharded_client.clone()), generation_health.clone());
let scheduler = Arc::new(SchedulerV3::new(
sharded_client,
waiting_served_ratio,
max_batch_prefill_tokens,
max_batch_total_tokens,
max_waiting_tokens,
max_batch_size,
shard_info.requires_padding,
shard_info.window_size,
shard_info.speculate,
generation_health,
));
tracing::info!("Using scheduler V3");
(scheduler, health_ext, shard_info, max_batch_total_tokens)
}
Err(_) => {
let mut sharded_client = v2::ShardedClient::connect_uds(master_shard_uds_path)
.await
.map_err(WebServerError::Connection)?;
// server is running on v2
// Clear the cache; useful if the webserver rebooted
sharded_client
.clear_cache(None)
.await
.map_err(WebServerError::Cache)?;
// Get info from the shard
let shard_info = sharded_client.info().await.map_err(WebServerError::Info)?;
// Warmup model
tracing::info!("Warming up model");
let max_batch_total_tokens = check_max_batch_total_tokens(
sharded_client
.warmup(
max_input_tokens as u32,
max_batch_prefill_tokens,
max_total_tokens as u32,
max_batch_size,
)
.await
.map_err(WebServerError::Warmup)?,
)?;
let health_ext =
HealthCheck::new(Arc::new(sharded_client.clone()), generation_health.clone());
let scheduler = Arc::new(SchedulerV2::new(
sharded_client,
waiting_served_ratio,
max_batch_prefill_tokens,
max_batch_total_tokens,
max_waiting_tokens,
max_batch_size,
shard_info.requires_padding,
shard_info.window_size,
shard_info.speculate,
generation_health,
));
tracing::info!("Using scheduler V2");
(scheduler, health_ext, shard_info, max_batch_total_tokens)
}
}
};
tracing::info!("Setting max batch total tokens to {max_batch_total_tokens}");
let validation = Validation::new(
validation_workers,
tokenizer,
config,
max_best_of,
max_stop_sequences,
max_top_n_tokens,
max_input_tokens,
max_total_tokens,
grammar_support,
);
let infer = Infer::new(
scheduler,
validation,
max_concurrent_requests,
tokenizer_config,
processor_config,
);
// Duration buckets
let duration_matcher = Matcher::Suffix(String::from("duration"));
let n_duration_buckets = 35;
let mut duration_buckets = Vec::with_capacity(n_duration_buckets);
// Minimum duration in seconds
let mut value = 0.0001;
for _ in 0..n_duration_buckets {
// geometric sequence
value *= 1.5;
duration_buckets.push(value);
}
// Input Length buckets
let input_length_matcher = Matcher::Full(String::from("tgi_request_input_length"));
let input_length_buckets: Vec<f64> = (0..100)
.map(|x| (max_input_tokens as f64 / 100.0) * (x + 1) as f64)
.collect();
// Generated tokens buckets
let generated_tokens_matcher = Matcher::Full(String::from("tgi_request_generated_tokens"));
let generated_tokens_buckets: Vec<f64> = (0..100)
.map(|x| (max_total_tokens as f64 / 100.0) * (x + 1) as f64)
.collect();
// Input Length buckets
let max_new_tokens_matcher = Matcher::Full(String::from("tgi_request_max_new_tokens"));
let max_new_tokens_buckets: Vec<f64> = (0..100)
.map(|x| (max_total_tokens as f64 / 100.0) * (x + 1) as f64)
.collect();
// Batch size buckets
let batch_size_matcher = Matcher::Full(String::from("tgi_batch_next_size"));
let batch_size_buckets: Vec<f64> = (0..1024).map(|x| (x + 1) as f64).collect();
// Speculated tokens buckets
let skipped_matcher = Matcher::Full(String::from("tgi_request_skipped_tokens"));
let skipped_buckets: Vec<f64> = (0..shard_info.speculate + 1).map(|x| x as f64).collect();
// Prometheus handler
let builder = PrometheusBuilder::new()
.set_buckets_for_metric(duration_matcher, &duration_buckets)
.unwrap()
.set_buckets_for_metric(input_length_matcher, &input_length_buckets)
.unwrap()
.set_buckets_for_metric(generated_tokens_matcher, &generated_tokens_buckets)
.unwrap()
.set_buckets_for_metric(max_new_tokens_matcher, &max_new_tokens_buckets)
.unwrap()
.set_buckets_for_metric(batch_size_matcher, &batch_size_buckets)
.unwrap()
.set_buckets_for_metric(skipped_matcher, &skipped_buckets)
.unwrap();
let prom_handle = builder
.install_recorder()
.expect("failed to install metrics recorder");
// CORS layer
let allow_origin = allow_origin.unwrap_or(AllowOrigin::any());
let cors_layer = CorsLayer::new()
.allow_methods([Method::GET, Method::POST])
.allow_headers([http::header::CONTENT_TYPE])
.allow_origin(allow_origin);
// Endpoint info
let info = Info {
model_id: model_info.model_id,
model_sha: model_info.sha,
model_dtype: shard_info.dtype,
model_device_type: shard_info.device_type,
model_pipeline_tag: model_info.pipeline_tag,
max_concurrent_requests,
max_best_of,
max_stop_sequences,
max_input_tokens,
max_total_tokens,
waiting_served_ratio,
max_batch_total_tokens,
max_waiting_tokens,
max_batch_size,
validation_workers,
max_client_batch_size,
router: env!("CARGO_PKG_NAME"),
version: env!("CARGO_PKG_VERSION"),
sha: option_env!("VERGEN_GIT_SHA"),
docker_label: option_env!("DOCKER_LABEL"),
};
// Define VertextApiDoc conditionally only if the "google" feature is enabled
let doc = {
// avoid `mut` if possible
#[cfg(feature = "google")]
{
use crate::VertexInstance;
#[derive(OpenApi)]
#[openapi(
paths(vertex_compatibility),
components(schemas(VertexInstance, VertexRequest, VertexResponse))
)]
struct VertextApiDoc;
// limiting mutability to the smallest scope necessary
let mut doc = ApiDoc::openapi();
doc.merge(VertextApiDoc::openapi());
doc
}
#[cfg(not(feature = "google"))]
ApiDoc::openapi()
};
// Configure Swagger UI
let swagger_ui = SwaggerUi::new("/docs").url("/api-doc/openapi.json", doc);
// Define base and health routes
let base_routes = Router::new()
.route("/", post(compat_generate))
.route("/", get(health))
.route("/info", get(get_model_info))
.route("/generate", post(generate))
.route("/generate_stream", post(generate_stream))
.route("/v1/chat/completions", post(chat_completions))
.route("/v1/completions", post(completions))
.route("/vertex", post(vertex_compatibility))
.route("/tokenize", post(tokenize))
.route("/health", get(health))
.route("/ping", get(health))
.route("/metrics", get(metrics));
// Conditional AWS Sagemaker route
let aws_sagemaker_route = if messages_api_enabled {
Router::new().route("/invocations", post(chat_completions)) // Use 'chat_completions' for OAI_ENABLED
} else {
Router::new().route("/invocations", post(compat_generate)) // Use 'compat_generate' otherwise
};
let compute_type =
ComputeType(std::env::var("COMPUTE_TYPE").unwrap_or("gpu+optimized".to_string()));
// Combine routes and layers
let mut app = Router::new()
.merge(swagger_ui)
.merge(base_routes)
.merge(aws_sagemaker_route);
#[cfg(feature = "google")]
{
tracing::info!("Built with `google` feature");
tracing::info!(
"Environment variables `AIP_PREDICT_ROUTE` and `AIP_HEALTH_ROUTE` will be respected."
);
if let Ok(env_predict_route) = std::env::var("AIP_PREDICT_ROUTE") {
app = app.route(&env_predict_route, post(vertex_compatibility));
}
if let Ok(env_health_route) = std::env::var("AIP_HEALTH_ROUTE") {
app = app.route(&env_health_route, get(health));
}
}
// add layers after routes
app = app
.layer(Extension(info))
.layer(Extension(health_ext.clone()))
.layer(Extension(compat_return_full_text))
.layer(Extension(infer))
.layer(Extension(compute_type))
.layer(Extension(prom_handle.clone()))
.layer(OtelAxumLayer::default())
.layer(cors_layer);
tracing::info!("Connected");
if ngrok {
#[cfg(feature = "ngrok")]
{
panic!("ngrok feature is not functional with axum=0.7 and hyper=1, waiting on https://github.com/ngrok/ngrok-rust/pull/137/files to re-enable.");
// Run server
}
#[cfg(not(feature = "ngrok"))]
{
let _ngrok_authtoken = ngrok_authtoken;
let _ngrok_domain = ngrok_domain;
let _ngrok_username = ngrok_username;
let _ngrok_password = ngrok_password;
panic!("`text-generation-router` was compiled without the `ngrok` feature");
}
} else {
// Run server
let listener = tokio::net::TcpListener::bind(&addr).await.unwrap();
axum::serve(listener, app)
.with_graceful_shutdown(shutdown_signal())
.await
.map_err(|err| WebServerError::Axum(Box::new(err)))?;
}
Ok(())
}
/// Shutdown signal handler
async fn shutdown_signal() {
let ctrl_c = async {
signal::ctrl_c()
.await
.expect("failed to install Ctrl+C handler");
};
#[cfg(unix)]
let terminate = async {
signal::unix::signal(signal::unix::SignalKind::terminate())
.expect("failed to install signal handler")
.recv()
.await;
};
#[cfg(not(unix))]
let terminate = std::future::pending::<()>();
tokio::select! {
_ = ctrl_c => {},
_ = terminate => {},
}
tracing::info!("signal received, starting graceful shutdown");
opentelemetry::global::shutdown_tracer_provider();
}
/// Convert to Axum supported formats
impl From<InferError> for (StatusCode, Json<ErrorResponse>) {
fn from(err: InferError) -> Self {
let status_code = match err {
InferError::GenerationError(_) => StatusCode::FAILED_DEPENDENCY,
InferError::Overloaded(_) => StatusCode::TOO_MANY_REQUESTS,
InferError::ValidationError(_) => StatusCode::UNPROCESSABLE_ENTITY,
InferError::IncompleteGeneration => StatusCode::INTERNAL_SERVER_ERROR,
InferError::TemplateError(_) => StatusCode::UNPROCESSABLE_ENTITY,
InferError::ToolError(_) => StatusCode::UNPROCESSABLE_ENTITY,
};
(
status_code,
Json(ErrorResponse {
error: err.to_string(),
error_type: err.error_type().to_string(),
}),
)
}
}
impl From<InferError> for Event {
fn from(err: InferError) -> Self {
Event::default()
.json_data(ErrorResponse {
error: err.to_string(),
error_type: err.error_type().to_string(),
})
.unwrap()
}
}
#[derive(Debug, Error)]
pub enum WebServerError {
#[error("Unable to connect to the Python model shards: {0}")]
Connection(ClientError),
#[error("Unable to clear the Python model shards cache: {0}")]
Cache(ClientError),
#[error("Unable to get the Python model shards info: {0}")]
Info(ClientError),
#[error("Unable to warmup the Python model shards: {0}")]
Warmup(ClientError),
#[error("Not enough memory to handle `max_total_tokens={0}`")]
NotEnoughMemory(usize),
#[error("Axum error: {0}")]
Axum(#[from] axum::BoxError),
}