hf_text-generation-inference/server/text_generation/models/seq2seq_lm.py

567 lines
21 KiB
Python

import torch
from dataclasses import dataclass
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM, PreTrainedTokenizerBase
from typing import Optional, Tuple, List, Type
from text_generation.models import Model
from text_generation.models.types import GeneratedText, Batch, Generation, PrefillTokens
from text_generation.pb import generate_pb2
from text_generation.utils import NextTokenChooser, StoppingCriteria, Sampling
@dataclass
class Seq2SeqLMBatch(Batch):
batch_id: int
requests: List[generate_pb2.Request]
# Encoder values
input_ids: torch.Tensor
attention_mask: torch.Tensor
# Decoder values
decoder_input_ids: torch.Tensor
decoder_attention_mask: Optional[torch.Tensor]
encoder_last_hidden_state: Optional[torch.Tensor]
# Seq2SeqLM keeps track of both encoder and decoder attention keys and values
past_key_values: Optional[List[Tuple]]
# Lengths of all generations present in the batch
input_lengths: List[int]
decoder_input_lengths: List[int]
# Generation helpers
next_token_choosers: List[NextTokenChooser]
stopping_criterias: List[StoppingCriteria]
# Metadata used for padding
size: int
max_input_length: int
max_decoder_input_length: int
def to_pb(self) -> generate_pb2.Batch:
"""Convert a Seq2SeqLMBatch to a text_generation.v1.Batch protobuf"""
return generate_pb2.Batch(
id=self.batch_id,
requests=self.requests,
size=self.size,
)
@classmethod
def from_pb(
cls,
pb: generate_pb2.Batch,
tokenizer: PreTrainedTokenizerBase,
device: torch.device,
) -> "Seq2SeqLMBatch":
"""Convert a text_generation.v1.Batch protobuf to a Seq2SeqLMBatch"""
inputs = []
next_token_choosers = []
stopping_criterias = []
input_lengths = []
decoder_input_ids = []
decoder_input_lengths = []
# Parse batch
for r in pb.requests:
inputs.append(r.inputs)
input_lengths.append(r.input_length)
# Decoder sequence only contains the bos_token
decoder_input_ids.append(tokenizer.bos_token_id)
decoder_input_lengths.append(1)
next_token_choosers.append(NextTokenChooser.from_pb(r.parameters, device))
stopping_criterias.append(
StoppingCriteria.from_pb(r.stopping_parameters, tokenizer)
)
# Tokenize batch
pad_to_multiple_of = 8 if device.type == "cuda" else None
tokenized_inputs = tokenizer(
inputs,
return_tensors="pt",
padding=True,
pad_to_multiple_of=pad_to_multiple_of,
return_token_type_ids=False,
).to(device)
# Convert decoder_input_ids to torch tensor of size [batch_size, 1]
decoder_input_ids = torch.tensor(decoder_input_ids, device=device).unsqueeze(-1)
return cls(
batch_id=pb.id,
requests=pb.requests,
input_ids=tokenized_inputs["input_ids"],
attention_mask=tokenized_inputs["attention_mask"],
decoder_input_ids=decoder_input_ids,
decoder_attention_mask=None,
encoder_last_hidden_state=None,
past_key_values=None,
input_lengths=input_lengths,
decoder_input_lengths=decoder_input_lengths,
next_token_choosers=next_token_choosers,
stopping_criterias=stopping_criterias,
size=len(pb.requests),
max_input_length=max(input_lengths),
max_decoder_input_length=1,
)
@classmethod
def concatenate(cls, batches: List["Seq2SeqLMBatch"]) -> "Seq2SeqLMBatch":
"""Concatenate multiple batches together by padding internal torch tensors"""
# Used for padding
total_batch_size = sum(batch.size for batch in batches)
max_input_length = max(batch.max_input_length for batch in batches)
max_decoder_input_length = max(
batch.max_decoder_input_length for batch in batches
)
# Batch attributes
requests = []
input_lengths = []
decoder_input_lengths = []
next_token_choosers = []
stopping_criterias = []
# Batch tensors
input_ids = None
attention_mask = None
decoder_input_ids = None
decoder_attention_mask = None
encoder_last_hidden_state = None
past_key_values = []
# Used for slicing correctly inside the tensors
# Equivalent to a cumsum on batch sizes
start_index = 0
for i, batch in enumerate(batches):
# Extend all list attributes
requests.extend(batch.requests)
input_lengths.extend(batch.input_lengths)
decoder_input_lengths.extend(batch.decoder_input_lengths)
next_token_choosers.extend(batch.next_token_choosers)
stopping_criterias.extend(batch.stopping_criterias)
# Slicing end index for this batch
end_index = start_index + batch.size
# We only concatenate batches that did at least one step
if batch.encoder_last_hidden_state is None:
raise ValueError("Batch encoder_last_hidden_state cannot be None")
# Create padded tensor
if input_ids is None:
input_ids = batch.input_ids.new_zeros(
(total_batch_size, max_input_length),
)
# Copy to correct indices
input_ids[
start_index:end_index, -batch.max_input_length :
] = batch.input_ids[:, -batch.max_input_length :]
# Create padded tensor
if attention_mask is None:
attention_mask = batch.attention_mask.new_zeros(
(total_batch_size, max_input_length),
)
# Copy to correct indices
attention_mask[
start_index:end_index, -batch.max_input_length :
] = batch.attention_mask[:, -batch.max_input_length :]
# Create padded tensor
if decoder_input_ids is None:
decoder_input_ids = batch.decoder_input_ids.new_zeros(
(total_batch_size, max_decoder_input_length),
)
# Copy to correct indices
decoder_input_ids[
start_index:end_index, -batch.max_decoder_input_length :
] = batch.decoder_input_ids[:, -batch.max_decoder_input_length :]
# Create padded tensor
if decoder_attention_mask is None:
# As decoder_attention_mask might not exist, we use `batch.attention_mask` for device here
decoder_attention_mask = batch.attention_mask.new_zeros(
(total_batch_size, max_decoder_input_length),
)
# If the decoder mask does not exist yet, all generations started at the same time and we never concatenated
# this batch. All generations are of length `batch.max_decoder_input_length`.
if batch.decoder_attention_mask is None:
decoder_attention_mask[
start_index:end_index, -batch.max_decoder_input_length :
] = 1
# If it exists, we need to index
else:
decoder_attention_mask[
start_index:end_index, -batch.max_decoder_input_length :
] = batch.decoder_attention_mask[:, -batch.max_decoder_input_length :]
# Create padded tensor
if encoder_last_hidden_state is None:
encoder_last_hidden_state = batch.encoder_last_hidden_state.new_zeros(
(
total_batch_size,
max_input_length,
batch.encoder_last_hidden_state.shape[-1],
),
)
# Copy to correct indices
encoder_last_hidden_state[
start_index:end_index, -batch.max_input_length :, :
] = batch.encoder_last_hidden_state[:, -batch.max_input_length :, :]
# Iterate over attention layers
for j, past in enumerate(batch.past_key_values):
_, num_heads, _, head_dim = past[0].shape
# This will run only once per layer
if j == len(past_key_values):
past_key_values.append([])
# Decoder past
for k, t in enumerate(past[:2]):
padded_t_shape = (
total_batch_size,
num_heads,
(max_decoder_input_length - 1),
head_dim,
)
# Initialize tensors
# This will run only once per layer and per past tensor
if k == len(past_key_values[j]):
past_key_values[j].append(t.new_zeros(padded_t_shape))
# We slice the past keys and values to remove the padding from previous batches
past_key_values[j][k][
start_index:end_index,
:,
-(batch.max_decoder_input_length - 1) :,
:,
] = t[:, :, -(batch.max_decoder_input_length - 1) :, :]
# encoder past
for k, t in enumerate(past[2:]):
padded_t_shape = (
total_batch_size,
num_heads,
max_input_length,
head_dim,
)
idx = k + 2
# Initialize tensors
# This will run only once per layer and per past tensor
if idx == len(past_key_values[j]):
past_key_values[j].append(t.new_zeros(padded_t_shape))
past_key_values[j][idx][
start_index:end_index, :, -batch.max_input_length :, :
] = t[:, :, -batch.max_input_length :, :]
start_index += batch.size
return cls(
batch_id=batches[0].batch_id,
requests=requests,
input_ids=input_ids,
attention_mask=attention_mask,
decoder_input_ids=decoder_input_ids,
decoder_attention_mask=decoder_attention_mask,
encoder_last_hidden_state=encoder_last_hidden_state,
past_key_values=past_key_values,
input_lengths=input_lengths,
decoder_input_lengths=decoder_input_lengths,
next_token_choosers=next_token_choosers,
stopping_criterias=stopping_criterias,
size=total_batch_size,
max_input_length=max_input_length,
max_decoder_input_length=max_decoder_input_length,
)
def __len__(self):
return len(self.requests)
class Seq2SeqLM(Model):
def __init__(self, model_id: str, revision: Optional[str] = None, quantize=False):
if torch.cuda.is_available():
device = torch.device("cuda")
dtype = torch.bfloat16 if torch.cuda.is_bf16_supported() else torch.float32
else:
if quantize:
raise ValueError("quantization is not available on CPU")
device = torch.device("cpu")
dtype = torch.float32
self.model = AutoModelForSeq2SeqLM.from_pretrained(
model_id,
revision=revision,
torch_dtype=dtype,
device_map="auto" if torch.cuda.is_available() else None,
load_in_8bit=quantize,
).eval()
tokenizer = AutoTokenizer.from_pretrained(
model_id, revision=revision, padding_side="left"
)
tokenizer.bos_token_id = self.model.config.decoder_start_token_id
super(Seq2SeqLM, self).__init__(
tokenizer=tokenizer,
device=device,
)
@property
def batch_type(self) -> Type[Seq2SeqLMBatch]:
return Seq2SeqLMBatch
def decode(self, decoder_ids: List[int]) -> str:
return self.tokenizer.decode(decoder_ids, skip_special_tokens=True)
def forward(
self,
input_ids,
attention_mask,
decoder_input_ids,
decoder_attention_mask: Optional,
encoder_last_hidden_state: Optional,
past_key_values: Optional = None,
) -> Tuple[
torch.Tensor,
torch.Tensor,
List[Tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]],
]:
# Model Forward
if past_key_values is not None:
decoder_input_ids = decoder_input_ids[:, -1].unsqueeze(-1)
# Wrap `encoder_last_hidden_state` because for some reason, Transformers does a `encoder_last_hidden_state[0]`
# internally...
if encoder_last_hidden_state is not None:
encoder_last_hidden_state = [encoder_last_hidden_state]
outputs = self.model.forward(
input_ids=input_ids,
attention_mask=attention_mask,
decoder_input_ids=decoder_input_ids,
decoder_attention_mask=decoder_attention_mask,
encoder_outputs=encoder_last_hidden_state,
past_key_values=past_key_values,
use_cache=True,
)
return (
outputs.logits,
outputs.encoder_last_hidden_state,
outputs.past_key_values,
)
def generate_token(
self, batch: Seq2SeqLMBatch
) -> Tuple[List[Generation], Optional[Seq2SeqLMBatch]]:
# For some reason, inference_mode does not work well with GLOO which we use on CPU
context_manager = (
torch.no_grad if self.device.type == "cpu" else torch.inference_mode
)
with context_manager():
logits, encoder_last_hidden_state, past = self.forward(
batch.input_ids,
batch.attention_mask,
batch.decoder_input_ids,
batch.decoder_attention_mask,
batch.encoder_last_hidden_state,
batch.past_key_values,
)
# List of indices to cache
next_batch_keep_indices = []
# New values for next forward
next_batch_input_lengths = []
next_batch_decoder_input_ids = []
next_batch_decoder_input_lengths = []
# Metadata
next_batch_size = 0
next_batch_max_input_length = 0
next_batch_max_decoder_input_length = 0
# Finished requests
generations: List[Generation] = []
# Zipped iterator
iterator = zip(
batch.requests,
batch.input_lengths,
batch.decoder_input_lengths,
logits,
batch.next_token_choosers,
batch.stopping_criterias,
batch.input_ids,
batch.decoder_input_ids,
)
# For each member of the batch
for i, (
request,
input_length,
decoder_input_length,
logits,
next_token_chooser,
stopping_criteria,
input_tokens,
decoder_input_ids,
) in enumerate(iterator):
# Select next token
next_token_id, logprobs = next_token_chooser(
decoder_input_ids.view(1, -1), logits
)
# Append next token to decoder tokens
decoder_input_ids = torch.cat([decoder_input_ids, next_token_id])
new_decoder_input_length = decoder_input_length + 1
# Generated token
next_token_logprob = logprobs[-1, next_token_id]
next_token_id_squeezed = next_token_id.squeeze()
next_token_text = self.tokenizer.decode(
next_token_id_squeezed,
clean_up_tokenization_spaces=False,
skip_special_tokens=False,
)
# Evaluate stopping criteria
stop, reason = stopping_criteria(next_token_id, next_token_text)
if stop:
# Slice with decoder_input_length to remove padding
# Decode all tokens
output_text = self.decode(decoder_input_ids[-new_decoder_input_length:])
# Get seed
if isinstance(next_token_chooser.choice, Sampling):
seed = next_token_chooser.choice.seed
else:
seed = None
generated_text = GeneratedText(
output_text, stopping_criteria.current_tokens, reason, seed
)
else:
# Keep request in the batch
generated_text = None
next_batch_keep_indices.append(i)
next_batch_decoder_input_ids.append(decoder_input_ids.unsqueeze(0))
next_batch_size += 1
next_batch_input_lengths.append(input_length)
next_batch_decoder_input_lengths.append(new_decoder_input_length)
next_batch_max_input_length = max(
next_batch_max_input_length, input_length
)
next_batch_max_decoder_input_length = max(
next_batch_max_decoder_input_length, new_decoder_input_length
)
# Prefill
if stopping_criteria.current_tokens == 1:
prefill_token_ids = decoder_input_ids[-new_decoder_input_length:-1]
prefill_texts = self.tokenizer.batch_decode(
prefill_token_ids,
clean_up_tokenization_spaces=False,
skip_special_tokens=False,
)
prefill_tokens = PrefillTokens(
prefill_token_ids, [float("nan")], prefill_texts
)
else:
prefill_tokens = None
generation = Generation(
request.id,
prefill_tokens,
next_token_id_squeezed,
next_token_logprob,
next_token_text,
generated_text,
)
generations.append(generation)
# We finished all generations in the batch; there is no next batch
if not next_batch_keep_indices:
return generations, None
next_batch_decoder_input_ids = torch.cat(next_batch_decoder_input_ids)
# If we finished at least one generation, we need to evict the indices of the generations that finished
# from the values of the next batch
if len(next_batch_keep_indices) != len(batch):
# Apply indices to attention mask, past key values and other items that need to be cached
next_batch_input_ids = batch.input_ids[next_batch_keep_indices]
next_batch_attention_mask = batch.attention_mask[next_batch_keep_indices]
if batch.decoder_attention_mask is not None:
next_batch_decoder_attention_mask = batch.decoder_attention_mask[
next_batch_keep_indices
]
else:
next_batch_decoder_attention_mask = None
next_batch_encoder_last_hidden_state = encoder_last_hidden_state[
next_batch_keep_indices
]
next_batch_past_key_values = [
[t[next_batch_keep_indices] for t in layer] for layer in past
]
next_batch_requests = [batch.requests[i] for i in next_batch_keep_indices]
next_batch_next_token_choosers = [
batch.next_token_choosers[i] for i in next_batch_keep_indices
]
next_batch_stopping_criterias = [
batch.stopping_criterias[i] for i in next_batch_keep_indices
]
else:
next_batch_input_ids = batch.input_ids
next_batch_attention_mask = batch.attention_mask
next_batch_decoder_attention_mask = batch.decoder_attention_mask
next_batch_encoder_last_hidden_state = encoder_last_hidden_state
next_batch_past_key_values = past
next_batch_requests = batch.requests
next_batch_next_token_choosers = batch.next_token_choosers
next_batch_stopping_criterias = batch.stopping_criterias
# Update decoder_attention_mask with padding as we added a new token to input_ids
if next_batch_decoder_attention_mask is not None:
next_batch_decoder_attention_mask = torch.cat(
[
next_batch_decoder_attention_mask,
next_batch_decoder_attention_mask.new_ones(next_batch_size, 1),
],
dim=1,
)
next_batch = Seq2SeqLMBatch(
batch_id=batch.batch_id,
requests=next_batch_requests,
input_ids=next_batch_input_ids,
attention_mask=next_batch_attention_mask,
decoder_input_ids=next_batch_decoder_input_ids,
decoder_attention_mask=next_batch_decoder_attention_mask,
encoder_last_hidden_state=next_batch_encoder_last_hidden_state,
past_key_values=next_batch_past_key_values,
input_lengths=next_batch_input_lengths,
decoder_input_lengths=next_batch_decoder_input_lengths,
next_token_choosers=next_batch_next_token_choosers,
stopping_criterias=next_batch_stopping_criterias,
size=next_batch_size,
max_input_length=next_batch_max_input_length,
max_decoder_input_length=next_batch_max_decoder_input_length,
)
return generations, next_batch