180 lines
7.6 KiB
C++
180 lines
7.6 KiB
C++
//
|
|
// Created by mfuntowicz on 10/23/24.
|
|
//
|
|
|
|
#ifndef TGI_LLAMA_CPP_BACKEND_FFI_HPP
|
|
#define TGI_LLAMA_CPP_BACKEND_FFI_HPP
|
|
|
|
#include <cstdint>
|
|
#include <exception>
|
|
#include <filesystem>
|
|
#include <memory>
|
|
#include <ranges>
|
|
#include <string_view>
|
|
#include <thread>
|
|
|
|
#include <spdlog/spdlog.h>
|
|
#include <spdlog/fmt/ranges.h>
|
|
#include <spdlog/fmt/std.h>
|
|
|
|
#ifdef NUMA_AVAILABLE
|
|
#define CURRENT_THREAD 0
|
|
#include <algorithm>
|
|
#include <unordered_set>
|
|
#include <numa.h>
|
|
#endif
|
|
|
|
namespace huggingface::tgi::backends::llamacpp {
|
|
class llama_cpp_worker_frontend_t;
|
|
}
|
|
|
|
#include "backend.hpp"
|
|
#include "backends/llamacpp/src/lib.rs.h"
|
|
#include "rust/cxx.h"
|
|
|
|
|
|
namespace huggingface::tgi::backends::llamacpp {
|
|
|
|
auto llama_model_deleter = [](llama_model *model) { llama_free_model(model); };
|
|
auto make_shared_llama_model = [](llama_model *model) {
|
|
return std::shared_ptr<llama_model>(model, llama_model_deleter);
|
|
};
|
|
|
|
class llama_cpp_backend_exception_t : std::exception {};
|
|
|
|
/**
|
|
* Llama.cpp frontend over the worker interfacing with Rust FFI layer
|
|
*/
|
|
class llama_cpp_worker_frontend_t {
|
|
private:
|
|
std::shared_ptr<llama_model> model_;
|
|
worker_t worker_;
|
|
|
|
public:
|
|
explicit llama_cpp_worker_frontend_t(llama_model *model, int32_t num_threads):
|
|
model_{ make_shared_llama_model(model) }, worker_(model_, {.n_ubatch = 1, .n_threads = num_threads, .no_perf = true}) {}
|
|
|
|
size_t stream(
|
|
rust::Slice<const uint32_t> input_tokens,
|
|
const generation_params_t generation_params,
|
|
const sampling_params_t &sampling_params,
|
|
InferContext *ctx,
|
|
rust::Fn<bool(InferContext *, uint32_t, float_t, bool, size_t)> callback
|
|
) {
|
|
// Wrapper around the provided Rust callback to inject the InferContext when returning from the C++ FFI boundaries
|
|
// It captures the context (ctx) using reference and will automatically call the Rust callback forwarding the InferContext
|
|
auto context_forwarding_callback =
|
|
[=, &ctx](uint32_t new_token_id, float_t logits, bool is_eos, size_t n_generated_tokens) -> bool {
|
|
return callback(ctx, new_token_id, logits, is_eos, n_generated_tokens);
|
|
};
|
|
|
|
// Ask the compiler to create view over Rust slice transmuting from uint32_t* to llama_token*
|
|
static auto as_llama_token = [](const uint32_t x){ return static_cast<llama_token>(x); };
|
|
|
|
#ifdef __cpp_lib_ranges_to_container
|
|
auto input_tokens_v = input_tokens | std::views::transform(as_llama_token) | std::ranges::to<std::vector>();
|
|
#else
|
|
auto input_tokens_ = input_tokens | std::views::transform(as_llama_token);
|
|
auto input_tokens_v = std::vector<llama_token>(input_tokens_.begin(), input_tokens_.end());
|
|
#endif
|
|
|
|
// Defer the generation to the actual worker_t
|
|
const auto generation_context = generation_context_t {generation_params, sampling_params, input_tokens_v};
|
|
if(const auto result = worker_.generate(generation_context, context_forwarding_callback); result.has_value()) [[likely]] {
|
|
return *result;
|
|
} else {
|
|
throw llama_cpp_backend_exception_t {};
|
|
}
|
|
}
|
|
};
|
|
|
|
std::unique_ptr<llama_cpp_worker_frontend_t> create_worker_frontend(rust::Str modelPath, uint32_t num_threads) {
|
|
#ifdef TGI_LLAMACPP_BACKEND_DEBUG
|
|
spdlog::set_level(spdlog::level::debug);
|
|
#endif
|
|
|
|
// Initialize the numa context from numactl
|
|
static const bool INITIALIZED_NUMA_CONTEXT_ONCE = [](){
|
|
llama_numa_init(GGML_NUMA_STRATEGY_NUMACTL);
|
|
return true;
|
|
}();
|
|
|
|
// Allocate model weights parameters
|
|
auto params = llama_model_default_params();
|
|
params.use_mmap = true;
|
|
|
|
// Allocate the model from the Rust provided, string path
|
|
auto *model = (llama_load_model_from_file(static_cast<std::string>(modelPath).c_str(), params));
|
|
return std::make_unique<llama_cpp_worker_frontend_t>(model, static_cast<int32_t>(num_threads));
|
|
}
|
|
|
|
struct numa_cpumask_deleter { void operator()(struct bitmask* cpumask){ numa_free_cpumask(cpumask); }};
|
|
typedef std::unique_ptr<struct bitmask, numa_cpumask_deleter> unique_cpumask_ptr;
|
|
|
|
void set_numactl_core_affinity(rust::Slice<const size_t> affinity) {
|
|
// void set_numactl_core_affinity(std::vector<size_t> affinity) {
|
|
#ifdef NUMA_AVAILABLE
|
|
if(numa_available()) {
|
|
SPDLOG_INFO("Setting numactl cores affinity to {} for thread {}", affinity, std::this_thread::get_id());
|
|
|
|
auto cpumask = unique_cpumask_ptr(numa_allocate_cpumask());
|
|
std::ranges::for_each(affinity, [&cpumask](size_t cpu) { numa_bitmask_setbit(cpumask.get(), cpu); });
|
|
numa_sched_setaffinity(CURRENT_THREAD, cpumask.get());
|
|
|
|
// Retrieve some information about the current setup
|
|
if(const auto numa_num_nodes = numa_num_configured_nodes(); numa_num_nodes > 1) {
|
|
const auto *numa_all_cpus = numa_all_cpus_ptr;
|
|
SPDLOG_INFO(FMT_STRING("All CPUs: {:b} (# Nodes: {:d}"), *numa_all_cpus->maskp, numa_num_nodes);
|
|
|
|
// Retrieve the cpumask specific for the current node
|
|
auto cpus_per_node = unique_cpumask_ptr(numa_allocate_cpumask());
|
|
|
|
// Allocate a set which keeps track of which nodes is being targeted
|
|
auto numa_spawning_nodes = std::unordered_set<size_t>();
|
|
for(auto node = 0; node < numa_num_nodes; ++node) {
|
|
// Retrieve the cpumask for the target node
|
|
numa_node_to_cpus(node, cpus_per_node.get());
|
|
|
|
// intersect which cores on the nodes are targeted, in no one on that specific node
|
|
// the value of allocated_cpus_on_node will be 0 as the result of the AND operation.
|
|
const auto allocated_cpus_on_node = *cpus_per_node->maskp & *cpumask->maskp;
|
|
if(allocated_cpus_on_node > 0) {
|
|
|
|
// If we have some cores on the node, attempt to insert in the set of targeted node
|
|
if(const auto [_, was_inserted] = numa_spawning_nodes.emplace(node); was_inserted) {
|
|
SPDLOG_DEBUG("Allocated thread spawning node: {:d}", node);
|
|
}
|
|
}
|
|
|
|
// Clear all the bits relative to the current node
|
|
numa_bitmask_clearall(cpus_per_node.get());
|
|
}
|
|
|
|
// Bind the memory if we spawn a single node, otherwise, let's display a warning
|
|
if(numa_spawning_nodes.size() == 1) {
|
|
SPDLOG_INFO(FMT_STRING("Setting memory affinity to node: {:d}"), *numa_spawning_nodes.begin());
|
|
numa_set_preferred(*numa_spawning_nodes.begin());
|
|
} else {
|
|
SPDLOG_WARN(FMT_STRING("Specified thread affinity spawn multiple NUMA nodes: {}"), numa_spawning_nodes);
|
|
}
|
|
}
|
|
|
|
#ifdef TGI_LLAMACPP_BACKEND_DEBUG
|
|
// Sanity check in the logs...
|
|
auto *cpumask_check = numa_allocate_cpumask();
|
|
numa_sched_getaffinity(CURRENT_THREAD, cpumask_check);
|
|
SPDLOG_DEBUG(
|
|
FMT_STRING("numa_sched_affinity for thread {} -> {:b}"),
|
|
std::this_thread::get_id(), *cpumask_check->maskp);
|
|
numa_free_cpumask(cpumask_check);
|
|
#endif
|
|
}
|
|
#else
|
|
SPDLOG_WARN("TGI's llama.cpp backend was compiled without NUMA support");
|
|
#endif
|
|
}
|
|
}
|
|
|
|
|
|
#endif //TGI_LLAMA_CPP_BACKEND_FFI_HPP
|