hf_text-generation-inference/server/bloom_inference/prepare_weights.py

186 lines
6.3 KiB
Python

import torch
import os
import tempfile
import json
from typing import BinaryIO
from joblib import Parallel, delayed
from functools import partial
from pathlib import Path
from tqdm import tqdm
from huggingface_hub import hf_hub_url
from huggingface_hub.file_download import _request_wrapper, hf_raise_for_status
def match_suffix(text, suffix):
return text[-len(suffix) :] == suffix
def http_get(
url: str,
temp_file: BinaryIO,
*,
timeout=10.0,
max_retries=0,
):
"""
Download a remote file. Do not gobble up errors, and will return errors tailored to the Hugging Face Hub.
"""
r = _request_wrapper(
method="GET",
url=url,
stream=True,
timeout=timeout,
max_retries=max_retries,
)
hf_raise_for_status(r)
for chunk in r.iter_content(chunk_size=1024):
if chunk: # filter out keep-alive new chunks
temp_file.write(chunk)
def cache_download_url(url: str, root_dir: Path):
filename = root_dir / url.split("/")[-1]
if not filename.exists():
temp_file_manager = partial(
tempfile.NamedTemporaryFile, mode="wb", dir=root_dir, delete=False
)
with temp_file_manager() as temp_file:
http_get(url, temp_file)
os.replace(temp_file.name, filename)
return filename
def prepare_weights(
model_name: str, cache_path: Path, save_path: Path, tp_world_size: int
):
save_paths = [
save_path / f"{model_name}_tp-rank-{tp_rank}-of-{tp_world_size}.pty"
for tp_rank in range(tp_world_size)
]
if all(save_path.exists() for save_path in save_paths):
print("Weights are already prepared")
return save_paths
cache_path.mkdir(parents=True, exist_ok=True)
if model_name == "bigscience/bloom-560m":
url = hf_hub_url(model_name, filename="pytorch_model.bin")
cache_download_url(url, cache_path)
elif model_name == "bigscience/bloom":
url = hf_hub_url(model_name, filename="pytorch_model.bin.index.json")
index_path = cache_download_url(url, cache_path)
with index_path.open("r") as f:
index = json.load(f)
# Get unique file names
weight_files = list(
set([filename for filename in index["weight_map"].values()])
)
urls = [hf_hub_url(model_name, filename=filename) for filename in weight_files]
Parallel(n_jobs=5)(
delayed(cache_download_url)(url, cache_path) for url in tqdm(urls)
)
else:
raise ValueError(f"Unknown model name: {model_name}")
shards_state_dicts = [{} for _ in range(tp_world_size)]
for weight_path in tqdm(Path(cache_path).glob("*.bin")):
state_dict = torch.load(weight_path, map_location="cpu")
keys = list(state_dict.keys())
for state_name in keys:
state = state_dict[state_name]
if any(
match_suffix(state_name, candidate)
for candidate in [
"self_attention.query_key_value.weight",
"self_attention.query_key_value.bias",
"mlp.dense_h_to_4h.weight",
"mlp.dense_h_to_4h.bias",
"word_embeddings.weight",
]
):
output_size = state.shape[0]
assert output_size % tp_world_size == 0
block_size = output_size // tp_world_size
sharded_weights = torch.split(state, block_size, dim=0)
assert len(sharded_weights) == tp_world_size
for tp_rank, shard in enumerate(sharded_weights):
shards_state_dicts[tp_rank][
"transformer." + state_name
] = shard.detach().clone()
elif match_suffix(state_name, "lm_head.weight"):
output_size = state.shape[0]
assert output_size % tp_world_size == 0
block_size = output_size // tp_world_size
sharded_weights = torch.split(state, block_size, dim=0)
assert len(sharded_weights) == tp_world_size
for tp_rank, shard in enumerate(sharded_weights):
shards_state_dicts[tp_rank][state_name] = shard.detach().clone()
elif any(
match_suffix(state_name, candidate)
for candidate in [
"self_attention.dense.weight",
"mlp.dense_4h_to_h.weight",
]
):
input_size = state.shape[1]
assert input_size % tp_world_size == 0
block_size = input_size // tp_world_size
sharded_weights = torch.split(state, block_size, dim=1)
assert len(sharded_weights) == tp_world_size
for tp_rank, shard in enumerate(sharded_weights):
shards_state_dicts[tp_rank][
"transformer." + state_name
] = shard.detach().clone()
elif any(
match_suffix(state_name, candidate)
for candidate in [
"self_attention.dense.bias",
"mlp.dense_4h_to_h.bias",
]
):
shards_state_dicts[0][
"transformer." + state_name
] = state.detach().clone()
for tp_rank in range(1, tp_world_size):
shards_state_dicts[tp_rank][
"transformer." + state_name
] = torch.zeros_like(state)
else:
# We duplicate parameters across tp ranks
for tp_rank in range(tp_world_size):
shards_state_dicts[tp_rank][
"transformer." + state_name
] = state.detach().clone()
del state_dict[state_name] # delete key from state_dict
del state # delete tensor
del state_dict
# we save state_dict
for tp_rank, (save_path, shard_state_dict) in enumerate(
zip(save_paths, shards_state_dicts)
):
save_paths.append(save_path)
save_path.parent.mkdir(parents=True, exist_ok=True)
if save_path.exists():
print(f"Skipping {save_path} as it already exists")
else:
torch.save(shard_state_dict, save_path)
return save_paths