324 lines
13 KiB
Python
324 lines
13 KiB
Python
import torch
|
|
import torch.distributed
|
|
|
|
from accelerate import init_empty_weights
|
|
from opentelemetry import trace
|
|
from pathlib import Path
|
|
from safetensors import safe_open
|
|
from transformers import AutoConfig
|
|
from transformers.models.llama import LlamaTokenizer
|
|
from typing import Optional, List
|
|
|
|
from text_generation_server.models import FlashCausalLM
|
|
from text_generation_server.models.custom_modeling.flash_llama_modeling import (
|
|
FlashLlamaForCausalLM,
|
|
TensorParallelEmbedding,
|
|
TensorParallelRowLinear,
|
|
TensorParallelColumnLinear,
|
|
)
|
|
from text_generation_server.utils import (
|
|
initialize_torch_distributed,
|
|
weight_files,
|
|
download_weights,
|
|
weight_hub_files,
|
|
LocalEntryNotFoundError,
|
|
)
|
|
|
|
tracer = trace.get_tracer(__name__)
|
|
|
|
|
|
class FlashLlama(FlashCausalLM):
|
|
def __init__(self, model_id: str, revision: Optional[str] = None, quantize=False):
|
|
self.past_pad = None
|
|
if torch.cuda.is_available():
|
|
device = torch.device("cuda")
|
|
dtype = torch.bfloat16 if torch.cuda.is_bf16_supported() else torch.float16
|
|
else:
|
|
raise NotImplementedError("FlashLlama is only available on GPU")
|
|
|
|
tokenizer = LlamaTokenizer.from_pretrained(
|
|
model_id,
|
|
revision=revision,
|
|
padding_side="left",
|
|
truncation_side="left",
|
|
)
|
|
|
|
config = AutoConfig.from_pretrained(
|
|
model_id,
|
|
revision=revision,
|
|
)
|
|
|
|
# We do not use from_pretrained as we modified the model internal module layout
|
|
try:
|
|
filenames = weight_files(model_id, revision, ".bin")
|
|
# Local files not found
|
|
except LocalEntryNotFoundError:
|
|
hub_files = weight_hub_files(model_id, revision, ".bin")
|
|
filenames = download_weights(hub_files, model_id, revision)
|
|
|
|
with init_empty_weights():
|
|
model = FlashLlamaForCausalLM(config)
|
|
|
|
self.load_weights(model, filenames, quantize, device, dtype)
|
|
self.model = model.eval().to(device)
|
|
|
|
super(FlashCausalLM, self).__init__(
|
|
tokenizer=tokenizer,
|
|
requires_padding=False,
|
|
dtype=dtype,
|
|
device=device,
|
|
)
|
|
|
|
@staticmethod
|
|
def load_weights(
|
|
model,
|
|
filenames: List[Path],
|
|
quantize: bool,
|
|
device: torch.device,
|
|
dtype: torch.dtype,
|
|
):
|
|
for filename in filenames:
|
|
state_dict = torch.load(filename, map_location="cpu")
|
|
for key, value in state_dict.items():
|
|
value = value.to(device if not quantize else "cpu").to(dtype)
|
|
|
|
layer_name = ".".join(key.split(".")[:4])
|
|
|
|
# Fused qkv
|
|
if "q_proj" in key or "k_proj" in key or "v_proj" in key:
|
|
final_key = layer_name + ".query_key_value.weight"
|
|
|
|
# Fused gate and up projs
|
|
elif "gate_proj" in key or "up_proj" in key:
|
|
final_key = layer_name + ".gate_up_proj.weight"
|
|
else:
|
|
final_key = key
|
|
|
|
module_name, param_name = final_key.rsplit(".", 1)
|
|
module = model.get_submodule(module_name)
|
|
|
|
try:
|
|
current_parameter_tensor = module._parameters[param_name]
|
|
except KeyError:
|
|
current_parameter_tensor = None
|
|
|
|
if current_parameter_tensor is not None:
|
|
if current_parameter_tensor.device == torch.device("meta"):
|
|
# Init qkv
|
|
if "query_key_value" in final_key:
|
|
module._parameters[param_name] = value.new_empty(
|
|
(value.shape[0] * 3, value.shape[1])
|
|
)
|
|
# Init gate and up proj
|
|
elif "gate_up_proj" in final_key:
|
|
module._parameters[param_name] = value.new_empty(
|
|
(value.shape[0] * 2, value.shape[1])
|
|
)
|
|
|
|
# Copy to correct slice
|
|
if "q_proj" in key:
|
|
module._parameters[param_name][: value.shape[0]] = value
|
|
elif "k_proj" in key:
|
|
module._parameters[param_name][
|
|
value.shape[0] : value.shape[0] * 2
|
|
] = value
|
|
elif "v_proj" in key:
|
|
module._parameters[param_name][value.shape[0] * 2 :] = value
|
|
elif "gate_proj" in key:
|
|
module._parameters[param_name][: value.shape[0]] = value
|
|
elif "up_proj" in key:
|
|
module._parameters[param_name][value.shape[0] :] = value
|
|
else:
|
|
if current_parameter_tensor.shape != value.shape:
|
|
raise ValueError(
|
|
f"Name {final_key} -- Current {current_parameter_tensor.shape} and got {value.shape}"
|
|
)
|
|
module._parameters[param_name] = value
|
|
else:
|
|
module._buffers[param_name] = value
|
|
|
|
del value
|
|
|
|
uninitialized_parameters = []
|
|
for n, p in model.named_parameters():
|
|
if p.data.device == torch.device("meta"):
|
|
uninitialized_parameters.append(n)
|
|
if uninitialized_parameters:
|
|
raise RuntimeError(
|
|
f"found uninitialized parameters in model: {uninitialized_parameters}"
|
|
)
|
|
|
|
torch.cuda.empty_cache()
|
|
model.post_load_weights(quantize)
|
|
|
|
|
|
class FlashLlamaSharded(FlashLlama):
|
|
def __init__(
|
|
self, model_id: str, revision: Optional[str] = None, quantize: bool = False
|
|
):
|
|
self.past_pad = None
|
|
self.process_group, self.rank, self.world_size = initialize_torch_distributed()
|
|
self.master = self.rank == 0
|
|
if torch.cuda.is_available():
|
|
device = torch.device(f"cuda:{self.rank}")
|
|
dtype = torch.bfloat16 if torch.cuda.is_bf16_supported() else torch.float16
|
|
else:
|
|
raise NotImplementedError("FlashLlama is only available on GPU")
|
|
|
|
tokenizer = LlamaTokenizer.from_pretrained(
|
|
model_id,
|
|
revision=revision,
|
|
padding_side="left",
|
|
truncation_side="left",
|
|
)
|
|
|
|
config = AutoConfig.from_pretrained(
|
|
model_id,
|
|
revision=revision,
|
|
)
|
|
|
|
torch.distributed.barrier(group=self.process_group)
|
|
filenames = weight_files(model_id, revision=revision, extension=".safetensors")
|
|
|
|
with init_empty_weights():
|
|
model = FlashLlamaForCausalLM(config, process_group=self.process_group)
|
|
|
|
torch.distributed.barrier(group=self.process_group)
|
|
self.load_weights(
|
|
model,
|
|
filenames,
|
|
quantize=quantize,
|
|
device=device,
|
|
dtype=dtype,
|
|
rank=self.rank,
|
|
world_size=self.world_size,
|
|
)
|
|
self.model = model.eval().to(device)
|
|
torch.distributed.barrier(group=self.process_group)
|
|
super(FlashCausalLM, self).__init__(
|
|
tokenizer=tokenizer,
|
|
requires_padding=False,
|
|
dtype=dtype,
|
|
device=device,
|
|
)
|
|
|
|
@staticmethod
|
|
def load_weights(
|
|
model,
|
|
filenames: List[str],
|
|
quantize: bool,
|
|
device: torch.device,
|
|
dtype: torch.dtype,
|
|
rank: int,
|
|
world_size: int,
|
|
):
|
|
for file in filenames:
|
|
with safe_open(
|
|
file, framework="pt", device=str(device) if not quantize else "cpu"
|
|
) as f:
|
|
for name in f.keys():
|
|
slice_ = f.get_slice(name)
|
|
|
|
layer_name = ".".join(name.split(".")[:4])
|
|
|
|
# Fused qkv
|
|
if "q_proj" in name or "k_proj" in name or "v_proj" in name:
|
|
final_name = layer_name + ".query_key_value.weight"
|
|
|
|
# Fused gate and up projs
|
|
elif "gate_proj" in name or "up_proj" in name:
|
|
final_name = layer_name + ".gate_up_proj.weight"
|
|
else:
|
|
final_name = name
|
|
|
|
module_name, param_name = final_name.rsplit(".", 1)
|
|
module = model.get_submodule(module_name)
|
|
|
|
if isinstance(module, TensorParallelColumnLinear):
|
|
size = slice_.get_shape()[0]
|
|
block_size = size // world_size
|
|
start = rank * block_size
|
|
stop = (rank + 1) * block_size
|
|
tensor = slice_[start:stop]
|
|
elif isinstance(module, TensorParallelRowLinear):
|
|
size = slice_.get_shape()[1]
|
|
block_size = size // world_size
|
|
start = rank * block_size
|
|
stop = (rank + 1) * block_size
|
|
tensor = slice_[:, start:stop]
|
|
elif isinstance(module, TensorParallelEmbedding):
|
|
size = slice_.get_shape()[0]
|
|
block_size = size // world_size
|
|
start = rank * block_size
|
|
stop = (rank + 1) * block_size
|
|
tensor = slice_[start:stop]
|
|
elif name == "lm_head.weight" and model.model.tp_embeddings:
|
|
size = slice_.get_shape()[0]
|
|
block_size = size // world_size
|
|
start = rank * block_size
|
|
stop = (rank + 1) * block_size
|
|
tensor = slice_[start:stop]
|
|
else:
|
|
try:
|
|
tensor = slice_[:]
|
|
except:
|
|
tensor = f.get_tensor(name)
|
|
|
|
tensor = tensor.contiguous().to(dtype)
|
|
|
|
try:
|
|
current_parameter_tensor = module._parameters[param_name]
|
|
except KeyError:
|
|
current_parameter_tensor = None
|
|
|
|
if current_parameter_tensor is not None:
|
|
if current_parameter_tensor.device == torch.device("meta"):
|
|
# Init qkv
|
|
if "query_key_value" in final_name:
|
|
module._parameters[param_name] = tensor.new_empty(
|
|
(tensor.shape[0] * 3, tensor.shape[1])
|
|
)
|
|
# Init gate and up proj
|
|
elif "gate_up_proj" in final_name:
|
|
module._parameters[param_name] = tensor.new_empty(
|
|
(tensor.shape[0] * 2, tensor.shape[1])
|
|
)
|
|
|
|
# Init gate and up proj
|
|
if "q_proj" in name:
|
|
module._parameters[param_name][: tensor.shape[0]] = tensor
|
|
elif "k_proj" in name:
|
|
module._parameters[param_name][
|
|
tensor.shape[0] : tensor.shape[0] * 2
|
|
] = tensor
|
|
elif "v_proj" in name:
|
|
module._parameters[param_name][
|
|
tensor.shape[0] * 2 :
|
|
] = tensor
|
|
elif "gate_proj" in name:
|
|
module._parameters[param_name][: tensor.shape[0]] = tensor
|
|
elif "up_proj" in name:
|
|
module._parameters[param_name][tensor.shape[0] :] = tensor
|
|
else:
|
|
if current_parameter_tensor.shape != tensor.shape:
|
|
raise ValueError(
|
|
f"Name {name} -- Current {current_parameter_tensor.shape} and got {tensor.shape}"
|
|
)
|
|
|
|
module._parameters[param_name] = tensor
|
|
|
|
else:
|
|
module._buffers[param_name] = tensor
|
|
|
|
uninitialized_parameters = []
|
|
for n, p in model.named_parameters():
|
|
if p.data.device == torch.device("meta"):
|
|
uninitialized_parameters.append(n)
|
|
if uninitialized_parameters:
|
|
raise RuntimeError(
|
|
f"found uninitialized parameters in model: {uninitialized_parameters}"
|
|
)
|
|
|
|
torch.cuda.empty_cache()
|
|
model.post_load_weights(quantize)
|